Flexible multibody dynamics approach for tire dynamics simulation

[1]  M. G. Bekker Introduction to Terrain-Vehicle Systems , 1969 .

[2]  Patrick Gruber,et al.  Shear forces in the contact patch of a braked-racing tyre , 2012 .

[3]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[4]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multipli , 1988 .

[5]  Sam Helwany,et al.  Applied Soil Mechanics with ABAQUS Applications , 2007 .

[6]  Moustafa El-Gindy,et al.  Soil Modeling Using FEA and SPH Techniques for a Tire-Soil Interaction , 2011 .

[7]  Danijel Pavković,et al.  Experimental analysis and modelling of longitudinal tyre friction dynamics for abrupt transients , 2005 .

[8]  P. Betsch,et al.  On the Use of Geometrically Exact Shells for Dynamic Tire Simulation , 2014 .

[9]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[10]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[11]  Aki Mikkola,et al.  A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation , 2013, Multibody System Dynamics.

[12]  Kaiming Xia Finite element modeling of tire/terrain interaction: Application to predicting soil compaction and tire mobility , 2011 .

[13]  Hiroyuki Sugiyama,et al.  Longitudinal Tire Dynamics Model for Transient Braking Analysis: ANCF-LuGre Tire Model , 2015 .

[14]  Hans B. Pacejka,et al.  Recent advances in tyre models and testing procedures , 2005 .

[15]  Ahmed A. Shabana,et al.  Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation , 2005 .

[16]  M. V. Sivaselvan,et al.  A solid‐shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis , 2013 .

[17]  S. Nemat-Nasser On finite deformation elasto-plasticity , 1982 .

[18]  Arend L. Schwab,et al.  COMPARISON OF THREE-DIMENSIONAL FLEXIBLE THIN PLATE ELEMENTS FOR MULTIBODY DYNAMIC ANALYSIS: FINITE ELEMENT FORMULATION AND ABSOLUTE NODAL COORDINATE FORMULATION , 2007 .

[19]  Chang-Wan Kim,et al.  Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation , 2014 .

[20]  K. Y. Sze,et al.  Three‐dimensional continuum finite element models for plate/shell analysis , 2002 .

[21]  Oleg Dmitrochenko,et al.  Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation , 2003 .

[22]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[23]  P. Richmond,et al.  Overview of cold regions mobility modeling at CRREL , 2006 .

[24]  A. Noor,et al.  Assessment of Computational Models for Multilayered Composite Shells , 1990 .

[25]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[26]  Aki Mikkola,et al.  Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation , 2006 .

[27]  P. Betsch,et al.  An enhanced tire model for dynamic simulation based on geometrically exact shells , 2016 .

[28]  Hiroshi Nakashima,et al.  Algorithm and implementation of soil–tire contact analysis code based on dynamic FE–DE method , 2004 .

[29]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[30]  Hiroyuki Sugiyama,et al.  Spatial joint constraints for the absolute nodal coordinate formulation using the non-generalized intermediate coordinates , 2011 .

[31]  J. Nagtegaal On the implementation of inelastic constitutive equations with special reference to large deformation problems , 1982 .

[32]  Edward L. Wilson,et al.  Incompatible Displacement Models , 1973 .

[33]  H. Sugiyama,et al.  On the use of elastic middle surface approach in the large deformation analysis of moderately thick shell structures using absolute nodal coordinate formulation , 2015 .

[34]  Yoshihiro Suda,et al.  Non-linear elastic ring tyre model using the absolute nodal coordinate formulation , 2009 .

[35]  Hiroyuki Sugiyama,et al.  Physics-Based Flexible Tire Model Integrated With LuGre Tire Friction for Transient Braking and Cornering Analysis , 2016 .

[36]  X. G. Tan,et al.  Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics , 2003 .

[37]  Carlos Canudas-de-Wit,et al.  Dynamic Friction Models for Road/Tire Longitudinal Interaction , 2003 .

[38]  Aki Mikkola,et al.  The Simplest 3- and 4-Noded Fully-Parameterized ANCF Plate Elements , 2012 .

[39]  Davor Hrovat,et al.  Extensions of the LuGre tyre friction model related to variable slip speed along the contact patch length , 2005 .

[40]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[41]  Hans B. Pacejka,et al.  Tire and Vehicle Dynamics , 1982 .

[42]  R. Hauptmann,et al.  A SYSTEMATIC DEVELOPMENT OF 'SOLID-SHELL' ELEMENT FORMULATIONS FOR LINEAR AND NON-LINEAR ANALYSES EMPLOYING ONLY DISPLACEMENT DEGREES OF FREEDOM , 1998 .

[43]  Mihai Anitescu,et al.  Using Krylov subspace and spectral methods for solving complementarity problems in many‐body contact dynamics simulation , 2013 .

[44]  L. Vu-Quoc,et al.  Efficient and accurate multilayer solid‐shell element: non‐linear materials at finite strain , 2005 .

[45]  M. Crisfield,et al.  Non‐Linear Finite Element Analysis of Solids and Structures, Volume 1 , 1993 .

[46]  Masaki Shiratori,et al.  Tire Cornering Simulation Using an Explicit Finite Element Analysis Code , 1998 .

[47]  Hiroyuki Sugiyama,et al.  Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates , 2003 .

[48]  Patrick Gruber,et al.  Normal and shear forces in the contact patch of a braked racing tyre. Part 1: results from a finite-element model , 2012 .

[49]  P. M. Naghdi,et al.  A critical review of the state of finite plasticity , 1990 .

[50]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[51]  Tamer M. Wasfy,et al.  Coupled Multibody Dynamics and Discrete Element Modeling of Vehicle Mobility on Cohesive Granular Terrains , 2014 .

[52]  Aki Mikkola,et al.  On the Use of the Degenerate Plate and the Absolute Nodal Co-Ordinate Formulations in Multibody System Applications , 2003 .

[53]  A. Mikkola,et al.  Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems , 2013 .

[54]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[55]  Patrick Gruber,et al.  Normal and shear forces in the contact patch of a braked racing tyre. Part 2: development of a physical tyre model , 2012 .

[56]  Yuan Zhang,et al.  Validation of a FEA Tire Model for Vehicle Dynamic Analysis and Full Vehicle Real Time Proving Ground Simulations , 1997 .

[57]  Michael Gipser,et al.  FTire: a physically based application-oriented tyre model for use with detailed MBS and finite-element suspension models , 2005 .

[58]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[59]  Ahmed A. Shabana,et al.  Soil models and vehicle system dynamics , 2013 .

[60]  E. H. Lee,et al.  Finite Strain Elastic-Plastic Theory , 1968 .

[61]  Kathrin Abendroth,et al.  Nonlinear Finite Elements For Continua And Structures , 2016 .

[62]  Tamer M. Wasfy,et al.  Prediction of vehicle mobility on large-scale soft-soil terrain maps using physics-based simulation , 2018 .

[63]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[64]  Aki Mikkola,et al.  A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications , 2003 .

[65]  Hammad Mazhar,et al.  Parallel Computing in Multibody System Dynamics: Why, When, and How , 2014 .

[66]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[67]  Sally Annette Shoop,et al.  FINITE ELEMENT MODELING OF TIRE-TERRAIN INTERACTION , 2001 .

[68]  Ahmed K. Noor,et al.  Assessment of Shear Deformation Theories for Multilayered Composite Plates , 1989 .

[69]  J. A. Tanner,et al.  Computational Methods for Frictional Contact With Applications to the Space Shuttle Orbiter Nose-Gear Tire , 1996 .

[70]  Peter Betsch,et al.  A nonlinear extensible 4-node shell element based on continuum theory and assumed strain interpolations , 1996 .

[71]  Ekkehard Ramm,et al.  An assessment of assumed strain methods in finite rotation shell analysis , 1989 .

[72]  R. Hauptmann,et al.  `Solid-shell' elements with linear and quadratic shape functions at large deformations with nearly incompressible materials , 2001 .

[73]  A. Gallrein,et al.  CDTire: a tire model for comfort and durability applications , 2007 .

[74]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[75]  Davor Hrovat,et al.  A 3D Brush-type Dynamic Tire Friction Model , 2004 .

[76]  Autar Kaw,et al.  Evaluation of Lugre Tire Friction Model with Measured Data on Multiple Pavement Surfaces , 2010 .