The XO Project: Searching for Transiting Extrasolar Planet Candidates

The XO project’s first objective is to find hot Jupiters transiting bright stars, i.e. V < 12, by precision differential photometry. Two XO cameras have been operating since September 2003 on the 10,000-foot Haleakala summit on Maui. Each XO camera consists of a 200-mm f/1.8 lens coupled to a 1024x1024 pixel, thinned CCD operated by drift scanning. In its first year of routine operation, XO has observed 6.6% of the sky, within six 7 ◦ -wide strips scanned from 0 ◦ to +63 ◦ of declination and centered at RA=0, 4, 8, 12, 16, and 20 hours. Autonomously operating, XO records 1 billion pixels per clear night, calibrates them photometrically and astrometrically, performs aperture photometry, archives the pixel data and transmits the photometric data to STScI for further analysis. From the first year of operation, the resulting database consists of photometry of �100,000 stars at more than 1000 epochs per star with differential photometric precision better than 1% per epoch. Analysis of the light curves of those stars produces transiting-planet candidates requiring detailed follow up, described elsewhere, culminating in spectroscopy to measure radial-velocity variation in order to differentiate genuine planets from the more numerous impostors, primarily eclipsing binary and multiple stars.

[1]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[2]  R. W. Noyes,et al.  A trend filtering algorithm for wide-field variability surveys , 2004 .

[3]  Steve B. Howell,et al.  A Technique for Ultrahigh‐Precision CCD Photometry , 2001 .

[4]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[5]  Kevin Krisciunas,et al.  A MODEL OF THE BRIGHTNESS OF MOONLIGHT , 1991 .

[6]  John N. Bahcall,et al.  Predicted star counts in selected fields and photometric bands Applications to galactic structure, the disk luminosity function, and the detection of a massive halo , 1981 .

[7]  William J. Borucki,et al.  The photometric method of detecting other planetary systems , 1984 .

[8]  K. Krisciunas,et al.  OPTICAL NIGHT-SKY BRIGHTNESS AT MAUNA KEA OVER THE COURSE OF A COMPLETE SUNSPOT CYCLE , 1997, astro-ph/9706111.

[9]  David Charbonneau,et al.  Hubble Space Telescope Time-Series Photometry of the Transiting Planet of HD?209458 , 2001 .

[10]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[11]  David Charbonneau,et al.  TrES-1: The Transiting Planet of a Bright K0 V Star , 2004 .

[12]  Berkeley,et al.  TESTING BLEND SCENARIOS FOR EXTRASOLAR TRANSITING PLANET CANDIDATES. I. OGLE-TR-33: A FALSE POSITIVE , 2004 .

[13]  Lauren Wood 技術解説 IEEE Internet Computing , 1999 .

[14]  Andrew Gould,et al.  Using All-Sky Surveys to Find Planetary Transits , 2002 .

[15]  Andy Hopper,et al.  Virtual Network Computing , 1998, IEEE Internet Comput..

[16]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[17]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[18]  M. López-Morales,et al.  The Pisgah Automated Survey: A Photometric Search for Low‐Mass Detached Eclipsing Binaries and Other Variable Stars , 2003, astro-ph/0310658.

[19]  Berkeley,et al.  Testing Blend Scenarios for Extrasolar Transiting Planet Candidates. II. OGLE-TR-56 , 2005 .

[20]  R. Paul Butler,et al.  Planets Orbiting Other Suns , 2000 .

[21]  R. Paul Butler,et al.  Scientific Frontiers in Research on Extrasolar Planets , 2003 .

[22]  Kenneth A. Janes,et al.  STELLAR PHOTOMETRY SOFTWARE , 1993 .

[23]  Timothy M. Brown,et al.  Expected Detection and False Alarm Rates for Transiting Jovian Planets , 2003, astro-ph/0307256.

[24]  D. Van Buren,et al.  A Robotic Wide‐Angle Hα Survey of the Southern Sky , 2001, astro-ph/0108518.

[25]  Lennart Lindegren,et al.  Atmospheric Intensity Scintillation of Stars. III. Effects for Different Telescope Apertures , 1998 .