Exact solution of certain time fractional nonlinear partial differential equations

Given a time fractional nonlinear partial differential equation, we show how to derive its exact solution using invariant subspace method. This has been illustrated through time fractional diffusion convection equation, time fractional nonlinear dispersive Boussinesq equation, time fractional reaction diffusion equation of second order, time fractional thin-film equation, and time fractional quadratic wave equation. Also, we explicitly shown that time fractional nonlinear partial differential equations admit more than one invariant subspaces which in turn helps to derive more than one exact solution.

[1]  Victor A. Galaktionov,et al.  Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  A. H. Bhrawy A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations , 2015, Numerical Algorithms.

[3]  R. K. Gazizov,et al.  Construction of exact solutions for fractional order differential equations by the invariant subspace method , 2013, Comput. Math. Appl..

[4]  R. Sahadevan,et al.  Approximate Analytical Solution of Two Coupled Time Fractional Nonlinear Schrödinger Equations , 2016 .

[5]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[6]  Ali H. Bhrawy,et al.  A review of operational matrices and spectral techniques for fractional calculus , 2015 .

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  Stanislav Spichak,et al.  On the Poincare-Invariant Second-Order Partial Equations for a Spinor Field , 1996 .

[9]  Ramajayam Sahadevan,et al.  Invariant Subspace Method and Exact Solutions of Certain Nonlinear Time Fractional Partial Differential Equations , 2015 .

[10]  José António Tenreiro Machado,et al.  Numerical Solution of the Two-Sided Space–Time Fractional Telegraph Equation Via Chebyshev Tau Approximation , 2017, J. Optim. Theory Appl..

[11]  L. Debnath,et al.  Integral Transforms and Their Applications, Second Edition , 2006 .

[12]  M. Mirzazadeh,et al.  Application of first integral method to fractional partial differential equations , 2014 .

[13]  Arak M. Mathai,et al.  Special Functions for Applied Scientists , 2008 .

[14]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[15]  Fevzi Erdogan,et al.  The homotopy analysis method for solving the time-fractional Fornberg-Whitham equation and comparison with Adomian's decomposition method , 2013 .

[16]  R. Sahadevan,et al.  On solutions of two coupled fractional time derivative Hirota equations , 2014 .

[17]  R. Sahadevan,et al.  Invariant analysis of time fractional generalized Burgers and Korteweg–de Vries equations , 2012 .

[18]  S. S. Ezz-Eldien,et al.  A new Legendre operational technique for delay fractional optimal control problems , 2016 .

[19]  E. Kinani,et al.  Invariant Subspace Method and Some Exact Solutions of Time Fractional Modi ed Kuramoto-Sivashinsky Equation , 2016 .

[20]  J. A. Tenreiro Machado,et al.  An Efficient Numerical Scheme for Solving Multi‐Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index , 2015 .

[21]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[22]  Shanmuganathan Rajasekar,et al.  Nonlinear dynamics : integrability, chaos, and patterns , 2003 .

[23]  R. Sahadevan,et al.  Invariant analysis of nonlinear fractional ordinary differential equations with Riemann–Liouville fractional derivative , 2015 .

[24]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[25]  Victor A. Galaktionov,et al.  Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics , 2006 .

[26]  M. Zaky,et al.  Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation , 2014, Nonlinear Dynamics.

[27]  J. Tenreiro Machado,et al.  Efficient Legendre spectral tau algorithm for solving the two-sided space–time Caputo fractional advection–dispersion equation , 2016 .

[28]  Ali H. Bhrawy,et al.  A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation , 2015, Numerical Algorithms.

[29]  E. H. Doha,et al.  A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations , 2016 .

[30]  E. H. El Kinani,et al.  Lie symmetry analysis of some time fractional partial differential equations , 2015 .

[31]  P. Artale Harris,et al.  Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method , 2013, 1306.1942.

[32]  Praveen Kumar Gupta,et al.  Homotopy perturbation method for fractional Fornberg-Whitham equation , 2011, Comput. Math. Appl..

[33]  E. H. El Kinani,et al.  Invariant Subspace Method and Fractional Modified Kuramoto-Sivashinsky Equation , 2015 .

[34]  Hossein Jafari,et al.  Adomian decomposition: a tool for solving a system of fractional differential equations , 2005 .

[35]  Anjan Biswas,et al.  Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations , 2016 .

[36]  Ali H. Bhrawy,et al.  The operational matrix of fractional integration for shifted Chebyshev polynomials , 2013, Appl. Math. Lett..

[37]  Sergey R. Svirshchevskii Invariant Linear Spaces and Exact Solutions of Nonlinear Evolution Equations , 1996 .

[38]  P. Artale Harris,et al.  Nonlinear time-fractional dispersive equations , 2014, 1410.8085.

[39]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .