Enhanced gas sensing properties by SnO2 nanosphere functionalized TiO2 nanobelts

We report synthesis of hierarchical nanostructures of SnO2 nanosphere functionalized TiO2 nanobelts as a novel sensing material by a simple hydrothermal technique. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and TiO2 toward volatile organic compounds of several species over that of the commonly applied undecorated TiO2 nanobelts. The improved gas sensing properties are attributed to the pronounced electron transfer between the hierarchical nanostructures and the absorbed oxygen species as well as to the heterojunctions of the SnO2 nanospheres to the TiO2 nanobelts which provide additional reaction rooms. The results represent an advance of hierarchical nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials.

[1]  Fan Zhang,et al.  Synthesis and enhanced gas sensing properties of crystalline CeO2/TiO2 core/shell nanorods , 2011 .

[2]  Wei Yan,et al.  Application of ultrasonic wave to clean the surface of the TiO2 nanotubes prepared by the electrochemical anodization , 2011 .

[3]  Hongrui Peng,et al.  Synthesis of γ-MnO2 single-crystalline nanobelts , 2007 .

[4]  V. Olevano,et al.  Peculiarities of surface doping with Cu in SnO2 thin film gas sensors , 1997 .

[5]  Makoto Egashira,et al.  Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2 , 2005 .

[6]  Matteo Ferroni,et al.  Effects of Ta/Nb-doping on titania-based thin films for gas-sensing , 2005 .

[7]  Yifan Zheng,et al.  Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4 , 2007 .

[8]  Wen Zeng,et al.  Selective Detection of Formaldehyde Gas Using a Cd-Doped TiO2-SnO2 Sensor , 2009, Sensors.

[9]  Po-Chiang Chen,et al.  High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. , 2009, ACS nano.

[10]  H. Hafez Synthesis of highly-active single-crystalline TiO2 nanorods and its application in environmental photocatalysis , 2009 .

[11]  Binggang Zhang,et al.  The structural and electrical studies on the Boron-doped SnO2 films deposited by spray pyrolysis , 2011 .

[12]  Kengo Shimanoe,et al.  Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size , 2005 .

[13]  G. Martinelli,et al.  Selective sublimation processing of thin films for gas sensing , 2005 .

[14]  Wonyong Choi,et al.  Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. , 2004, Water research.

[15]  L. A. Patil,et al.  Synthesis of SnO2 hollow microspheres from ultrasonic atomization and their role in hydrogen sensing , 2011 .

[16]  Yang Liu,et al.  Optical and Electrical Performance of SnO2 Capped ZnO Nanowire Arrays , 2007 .

[17]  Hongzhi Wang,et al.  Template-free formation of vertically oriented TiO2 nanorods with uniform distribution for organics-sensing application. , 2011, Journal of hazardous materials.

[18]  K. Balkus,et al.  Mesoporous Molecular Sieve Derived TiO2 Nanofibers Doped with SnO2 , 2007 .

[19]  Guoe Cheng,et al.  Synthesis, characterization and photocatalysis of SnO2 nanorods with large aspect ratios , 2011 .

[20]  Weng-Sing Hwang,et al.  Substrate effects on the oxygen gas sensing properties of SnO2/TiO2 thin films , 2006 .

[21]  P. Maddalena,et al.  (Ti, Sn)O2 solid solutions for gas sensing: A systematic approach by different techniques for different calcination temperature and molar composition , 2009 .

[22]  D. Dhawale,et al.  Liquefied petroleum gas (LPG) sensing performance of electron beam irradiated chemically deposited TiO2 thin films , 2009 .

[23]  Jun Zhang,et al.  Synthesis of Pt nanoparticles functionalized WO3 nanorods and their gas sensing properties , 2011 .

[24]  Zhongchang Wang,et al.  Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds , 2010 .

[25]  Rusen Yang,et al.  Mechanism and optimization of pH sensing using SnO2 nanobelt field effect transistors. , 2008, Nano letters.

[26]  Shan Gao,et al.  Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating , 2006 .

[27]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[28]  Hongxing Yang,et al.  DNA-like dye-sensitized solar cells based on TiO2 nanowire-covered nanotube bilayer film electrodes , 2010 .

[29]  G. Sberveglieri,et al.  Preparation of Radial and Longitudinal Nanosized Heterostructures of In2O3 and SnO2 , 2007 .

[30]  Vidhya Chakrapani,et al.  Band‐Edge Engineered Hybrid Structures for Dye‐Sensitized Solar Cells Based on SnO2 Nanowires , 2008 .

[31]  Guowei Yang,et al.  Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen , 2008 .

[32]  P. Gouma,et al.  Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection , 2003 .

[33]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[34]  Chii-Wann Lin,et al.  Surface Plasmon Resonance of SnO2/Au Bi-layer Films for Gas Sensing Applications , 2010 .

[35]  N. Shaalan,et al.  Influence of morphology and structure geometry on NO2 gas-sensing characteristics of SnO2 nanostructures synthesized via a thermal evaporation method , 2011 .

[36]  G. L. Sharma,et al.  Effect of Nb metal ion in TiO2 oxygen gas sensor , 1996 .

[37]  Peng Sun,et al.  Dispersive SnO2 nanosheets: Hydrothermal synthesis and gas-sensing properties , 2011 .

[38]  A. Cornet,et al.  Transition metals (Co, Cu) as additives on hydrothermally treated Tio2 for gas sensing , 2005 .

[39]  Gwo-Bin Lee,et al.  Characterization of SnO2/TiO2 Double-Layer Films as Alcohol Sensing Materials , 2004 .

[40]  Tetsuya Kida,et al.  Microstructure control of TiO2 nanotubular films for improved VOC sensing , 2011 .

[41]  Zhongchang Wang,et al.  Microstructure and Gas-Sensing Property of Titania-Added ZnSnO3 , 2010 .

[42]  Byeong Kwon Ju,et al.  Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater , 2011 .

[43]  Udo Weimar,et al.  Basics of oxygen and SnO2 interaction; work function change and conductivity measurements , 2006 .

[44]  Computer simulation of the surface energy barrier of oxidic semiconductors with mobile donors , 1994 .

[45]  S. Barth,et al.  Chemical Vapor Growth of One‐dimensional Magnetite Nanostructures , 2008 .

[46]  K. Zakrzewska,et al.  TiO2–SnO2 system for gas sensing—Photodegradation of organic contaminants , 2007 .

[47]  F. Han,et al.  Microstructure and photocatalytic activity of mesoporous TiO2 film coated on an aluminum foam , 2010 .

[48]  Sanjay Mathur,et al.  Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires , 2008 .

[49]  Jeong-Woo Choi,et al.  Enhanced photocatalytic property of nanoporous TiO2/SiO2 micro-particles prepared by aerosol assisted co-assembly of nanoparticles , 2011 .

[50]  Amit V. Desai,et al.  Mechanical properties of ZnO nanowires , 2007 .

[51]  Makoto Egashira,et al.  High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd , 2002 .