Battery-less Tri-band-Radio Neuro-monitor and Responsive Neurostimulator for Diagnostics and Treatment of Neurological Disorders

A 0.13 μm CMOS system on a chip (SoC) for 64 channel neuroelectrical monitoring and responsive neurostimulation is presented. The direct-coupled chopper-stabilized neural recording front end rejects up to ±50 mV input dc offset using an in-channel digitally assisted feedback loop. It yields a compact 0.018 mm2 integration area and 4.2 μVrms integrated input-referred noise over 1 Hz to 1 kHz frequency range. A multiplying specific absorption rate (SAR) ADC in each channel calibrates channel-to-channel gain mismatch. A multicore low-power DSP performs synchrony-based neurological event detection and triggers a subset of 64 programmable current-mode stimulators for subsequent neuromodulation. Triple-band FSK/ultra-wideband (UWB) wireless transmitters communicate to receivers located at 10 cm to 10 m distance from the SoC with data rates from 1.2 to 45 Mbps. An inductive link that operates at 1.5 MHz, provides power and is also used to communicate commands to an on-chip ASK receiver. The chip occupies 16 mm2 while consuming 2.17 and 5.8 mW with UWB and FSK transmitters, respectively. Efficacy of the SoC is assessed using a rat model of temporal lobe epilepsy characterized by spontaneous seizures. It exhibits an average seizure detection sensitivity and specificity of 87% and 95%, respectively, with over 78% of all seizures aborted.

[1]  Mohamad Sawan,et al.  A Novel Low-Power-Implantable Epileptic Seizure-Onset Detector , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[2]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[3]  Roman Genov,et al.  Cellular inductive powering system for weakly-linked resonant rodent implants , 2013, 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[4]  A.-T. Avestruz,et al.  A 5 $\mu$ W/Channel Spectral Analysis IC for Chronic Bidirectional Brain–Machine Interfaces , 2008, IEEE Journal of Solid-State Circuits.

[5]  Mohamad Sawan,et al.  A Low-Power Integrated Bioamplifier With Active Low-Frequency Suppression , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[6]  Yong Ping Xu,et al.  A Compact, Low Input Capacitance Neural Recording Amplifier , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[7]  John W. Miller,et al.  Anticonvulsant effects of the experimental induction of hippocampal theta activity , 1994, Epilepsy Research.

[8]  Magdy M. A. Salama,et al.  Massively-Parallel Neuromonitoring and Neurostimulation Rodent Headset With Nanotextured Flexible Microelectrodes , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[9]  Jerald Yoo,et al.  A 1.83µJ/classification nonlinear support-vector-machine-based patient-specific seizure classification SoC , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[10]  Jan M. Rabaey,et al.  A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply , 2012, IEEE Journal of Solid-State Circuits.

[11]  Karim Abdelhalim,et al.  915-MHz FSK/OOK Wireless Neural Recording SoC With 64 Mixed-Signal FIR Filters , 2013, IEEE Journal of Solid-State Circuits.

[12]  Karim Abdelhalim,et al.  Phase-Synchronization Early Epileptic Seizure Detector VLSI Architecture , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[13]  Refet Firat Yazicioglu,et al.  Measurement and Analysis of Current Noise in Chopper Amplifiers , 2013, IEEE Journal of Solid-State Circuits.

[14]  Refet Firat Yazicioglu,et al.  A $160~\mu {\rm W}$ 8-Channel Active Electrode System for EEG Monitoring , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[15]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[16]  Sheng-Fu Liang,et al.  A Fully Integrated 8-Channel Closed-Loop Neural-Prosthetic CMOS SoC for Real-Time Epileptic Seizure Control , 2013, IEEE Journal of Solid-State Circuits.

[17]  Karim Abdelhalim,et al.  Compact chopper-stabilized neural amplifier with low-distortion high-pass filter in 0.13µm CMOS , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[18]  Michael P. Flynn,et al.  A 64 Channel Programmable Closed-Loop Neurostimulator With 8 Channel Neural Amplifier and Logarithmic ADC , 2010, IEEE Journal of Solid-State Circuits.

[19]  Pedram Mohseni,et al.  A Miniaturized System for Spike-Triggered Intracortical Microstimulation in an Ambulatory Rat , 2011, IEEE Transactions on Biomedical Engineering.

[20]  Ruslana Shulyzki,et al.  320-Channel Active Probe for High-Resolution Neuromonitoring and Responsive Neurostimulation , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[21]  Refet Firat Yazicioglu,et al.  A 160μW 8-channel active electrode system for EEG monitoring , 2011, 2011 IEEE International Solid-State Circuits Conference.

[22]  Daniel R. Merrill,et al.  Electrical stimulation of excitable tissue: design of efficacious and safe protocols , 2005, Journal of Neuroscience Methods.

[23]  R.V. Shannon,et al.  A model of safe levels for electrical stimulation , 1992, IEEE Transactions on Biomedical Engineering.

[24]  A.-T. Avestruz,et al.  A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials , 2007, IEEE Journal of Solid-State Circuits.

[25]  Roman Genov,et al.  Battery-less modular responsive neurostimulator for prediction and abortion of epileptic seizures , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[26]  Karim Abdelhalim,et al.  Low-distortion super-GOhm subthreshold-MOS resistors for CMOS neural amplifiers , 2013, 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[27]  Moo Sung Chae,et al.  A 128-Channel 6mW Wireless Neural Recording IC with On-the-Fly Spike Sorting and UWB Tansmitter , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[28]  Anantha Chandrakasan,et al.  An 8-Channel Scalable EEG Acquisition SoC With Patient-Specific Seizure Classification and Recording Processor , 2013, IEEE Journal of Solid-State Circuits.

[29]  Karim Abdelhalim,et al.  Inductively-powered direct-coupled 64-channel chopper-stabilized epilepsy-responsive neurostimulator with digital offset cancellation and tri-band radio , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[30]  M. T. Salam,et al.  Rapid brief feedback intracerebral stimulation based on real‐time desynchronization detection preceding seizures stops the generation of convulsive paroxysms , 2015, Epilepsia.

[31]  Jan M. Rabaey,et al.  24.1 A miniaturized 64-channel 225μW wireless electrocorticographic neural sensor , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[32]  Karim Abdelhalim,et al.  64-Channel UWB Wireless Neural Vector Analyzer SOC With a Closed-Loop Phase Synchrony-Triggered Neurostimulator , 2013, IEEE Journal of Solid-State Circuits.

[33]  Teresa H. Y. Meng,et al.  HermesE: A 96-Channel Full Data Rate Direct Neural Interface in 0.13 $\mu$ m CMOS , 2012, IEEE Journal of Solid-State Circuits.

[34]  Refet Firat Yazicioglu,et al.  A 200 $\mu$ W Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems , 2008, IEEE Journal of Solid-State Circuits.

[35]  Houman Khosravani,et al.  The control of seizure-like activity in the rat hippocampal slice. , 2003, Biophysical journal.

[36]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[37]  Karim Abdelhalim,et al.  Phase-Synchronization Early Epileptic Seizure , 2011 .

[38]  Pedram Mohseni,et al.  A fully integrated neural recording amplifier with DC input stabilization , 2004, IEEE Transactions on Biomedical Engineering.

[39]  Yusuf Leblebici,et al.  Energy Efficient Low-Noise Neural Recording Amplifier With Enhanced Noise Efficiency Factor , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[40]  José Luis Perez Velazquez,et al.  Experimental observation of increased fluctuations in an order parameter before epochs of extended brain synchronization , 2011, Journal of biological physics.

[41]  Anantha Chandrakasan,et al.  An 8-channel scalable EEG acquisition SoC with fully integrated patient-specific seizure classification and recording processor , 2012, 2012 IEEE International Solid-State Circuits Conference.

[42]  Roman Genov,et al.  Comparative analysis of seizure control efficacy of 5Hz and 20Hz responsive deep brain stimulation in rodent models of epilepsy , 2015, 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[43]  J. A. Johnson,et al.  FDA Regulation of Medical Devices , 2012 .

[44]  P. K. Chan,et al.  A CMOS analog front-end IC for portable EEG/ECG monitoring applications , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[45]  Roman Genov,et al.  56-channel direct-coupled chopper-stabilized EEG monitoring ASIC with digitally-assisted offset correction at the folding nodes , 2014, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings.

[46]  Maysam Ghovanloo,et al.  An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications , 2010, IEEE Transactions on Biomedical Circuits and Systems.