Analysis of Hyperspectral Data to Develop an Approach for Document Images

Hyperspectral data analysis is being utilized as an effective and compelling tool for image processing, providing unprecedented levels of information and insights for various applications. In this manuscript, we have compiled and presented a comprehensive overview of recent advances in hyperspectral data analysis that can provide assistance for the development of customized techniques for hyperspectral document images. We review the fundamental concepts of hyperspectral imaging, discuss various techniques for data acquisition, and examine state-of-the-art approaches to the preprocessing, feature extraction, and classification of hyperspectral data by taking into consideration the complexities of document images. We also explore the possibility of utilizing hyperspectral imaging for addressing critical challenges in document analysis, including document forgery, ink age estimation, and text extraction from degraded or damaged documents. Finally, we discuss the current limitations of hyperspectral imaging and identify future research directions in this rapidly evolving field. Our review provides a valuable resource for researchers and practitioners working on document image processing and highlights the potential of hyperspectral imaging for addressing complex challenges in this domain.

[1]  Vinay Kumar,et al.  Evaluating automated endmember extraction for classifying hyperspectral data and deriving spectral parameters for monitoring forest vegetation health , 2022, Environmental Monitoring and Assessment.

[2]  Palla Parasuram Yadav,et al.  ATGP based Change Detection in Hyperspectral Images , 2022, IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society.

[3]  H. Sahour,et al.  Detecting hydrocarbon micro-seepage and related contamination, probable prospect areas, deduced from a comparative analysis of multispectral and hyperspectral satellite images , 2022, Journal of King Saud University - Science.

[4]  G. Costa,et al.  A Distributed N-FINDR Cloud Computing-Based Solution for Endmembers Extraction on Large-Scale Hyperspectral Remote Sensing Data , 2022, Remote. Sens..

[5]  Bo Du,et al.  Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification , 2022, IEEE Transactions on Image Processing.

[6]  Kishor P. Upla,et al.  A shallow network for hyperspectral image classification using an autoencoder with convolutional neural network , 2021, Multim. Tools Appl..

[7]  Ping Liu,et al.  A review of deep learning used in the hyperspectral image analysis for agriculture , 2021, Artificial Intelligence Review.

[8]  Feng Zhou,et al.  Classification of Hyperspectral Images via Multitask Generative Adversarial Networks , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Kun Gao,et al.  Band Selection of Hyperspectral Images Using Attention-Based Autoencoders , 2021, IEEE Geoscience and Remote Sensing Letters.

[10]  Yuhong He,et al.  Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture , 2020, Remote. Sens..

[11]  Vittorio Rosato,et al.  Assessing Earthquake-Induced Urban Rubble by Means of Multiplatform Remotely Sensed Data , 2020, ISPRS Int. J. Geo Inf..

[12]  M. H. Tangestani,et al.  Sub-pixel Mapping of Copper- and Iron-Bearing Metamorphic Rocks Using ASTER Data: A Case Study of Toutak and Surian Complexes, NE Shiraz, Iran , 2020, Natural Resources Research.

[13]  Antonio Plaza,et al.  Scalable recurrent neural network for hyperspectral image classification , 2020, The Journal of Supercomputing.

[14]  Sabine Chabrillat,et al.  Analyses of Namibian Seasonal Salt Pan Crust Dynamics and Climatic Drivers Using Landsat 8 Time-Series and Ground Data , 2020, Remote. Sens..

[15]  Yonggui Kao,et al.  Adaptive Control of Nonlinear Semi-Markovian Jump T–S Fuzzy Systems With Immeasurable Premise Variables via Sliding Mode Observer , 2020, IEEE Transactions on Cybernetics.

[16]  Cheng Shi,et al.  Multiscale Superpixel-Based Hyperspectral Image Classification Using Recurrent Neural Networks With Stacked Autoencoders , 2020, IEEE Transactions on Multimedia.

[17]  Abhishek Samanta,et al.  A Review of Convolutional Neural Networks , 2020, 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE).

[18]  M. Hasanlou,et al.  Improving hyperspectral sub-pixel target detection in multiple target signatures using a revised replacement signal model , 2020 .

[19]  Mercedes Eugenia Paoletti,et al.  Deep learning classifiers for hyperspectral imaging: A review , 2019 .

[20]  Masahiro Yamaguchi,et al.  A novel two-stage deep learning-based small-object detection using hyperspectral images , 2019, Optical Review.

[21]  Hong Yan,et al.  Hyperspectral document image processing: Applications, challenges and future prospects , 2019, Pattern Recognit..

[22]  Daniel E. Worrall,et al.  Deep Scale-spaces: Equivariance Over Scale , 2019, NeurIPS.

[23]  David A. Clausi,et al.  Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification , 2019, IEEE Transactions on Cybernetics.

[24]  Sergio Benini,et al.  Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review , 2019, J. Imaging.

[25]  Jon Atli Benediktsson,et al.  Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Jon Atli Benediktsson,et al.  Deep Learning for Hyperspectral Image Classification: An Overview , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Joonwhoan Lee,et al.  A 3-D Atrous Convolution Neural Network for Hyperspectral Image Denoising , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Junwei Han,et al.  Learning Compact and Discriminative Stacked Autoencoder for Hyperspectral Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Sheng Zhong,et al.  HSI-DeNet: Hyperspectral Image Restoration via Convolutional Neural Network , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Jianyu Yang,et al.  Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a Modified Two-Branch Convolutional Neural Network , 2019, ISPRS Int. J. Geo Inf..

[31]  Peng Ren,et al.  Cofactor-Based Efficient Endmember Extraction for Green Algae Area Estimation , 2019, IEEE Geoscience and Remote Sensing Letters.

[32]  Olivier Bachem,et al.  Recent Advances in Autoencoder-Based Representation Learning , 2018, ArXiv.

[33]  Sung-Bong Jang,et al.  A Comparison of Regularization Techniques in Deep Neural Networks , 2018, Symmetry.

[34]  Xiao Xiang Zhu,et al.  Hyperspectral and LiDAR Fusion Using Deep Three-Stream Convolutional Neural Networks , 2018, Remote. Sens..

[35]  Khurram Khurshid,et al.  Deep learning for automated forgery detection in hyperspectral document images , 2018, J. Electronic Imaging.

[36]  Chen Li,et al.  Spatial Sequential Recurrent Neural Network for Hyperspectral Image Classification , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  Cheng Shi,et al.  Multi-scale hierarchical recurrent neural networks for hyperspectral image classification , 2018, Neurocomputing.

[38]  Lin Zhu,et al.  Generative Adversarial Networks for Hyperspectral Image Classification , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Kai Liu,et al.  Fast FPGA Implementation for Computing the Pixel Purity Index of Hyperspectral Images , 2018, J. Circuits Syst. Comput..

[40]  Tao Li,et al.  HSI-CNN: A Novel Convolution Neural Network for Hyperspectral Image , 2018, 2018 International Conference on Audio, Language and Image Processing (ICALIP).

[41]  Chen Ke,et al.  Military object detection using multiple information extracted from hyperspectral imagery , 2017, 2017 International Conference on Progress in Informatics and Computing (PIC).

[42]  Stephen Marshall,et al.  Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries , 2017, Sensors.

[43]  Vincent Dumoulin,et al.  Generative Adversarial Networks: An Overview , 2017, 1710.07035.

[44]  Chein-I Chang,et al.  Progressive Band Processing of Fast Iterative Pixel Purity Index for Finding Endmembers , 2017, IEEE Geoscience and Remote Sensing Letters.

[45]  Hermann Ney,et al.  A comprehensive study of batch construction strategies for recurrent neural networks in MXNet , 2017, ArXiv.

[46]  Qingshan Liu,et al.  Cascaded Recurrent Neural Networks for Hyperspectral Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Pedram Ghamisi,et al.  Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Chunhui Zhao,et al.  Spectral-Spatial Classification of Hyperspectral Imagery Based on Stacked Sparse Autoencoder and Random Forest , 2017 .

[49]  David Bergström,et al.  Hyperspectral image analysis using deep learning — A review , 2016, 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA).

[50]  Ajmal S. Mian,et al.  Automatic Signature Segmentation Using Hyper-Spectral Imaging , 2016, 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR).

[51]  Jonathan Cheung-Wai Chan,et al.  Hyperspectral image classification using two-channel deep convolutional neural network , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[52]  Chein-I Chang,et al.  Recursive Band Processing of Automatic Target Generation Process for Finding Unsupervised Targets in Hyperspectral Imagery , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Heesung Kwon,et al.  Going Deeper With Contextual CNN for Hyperspectral Image Classification , 2016, IEEE Transactions on Image Processing.

[54]  José Manuel Amigo,et al.  Hyperspectral image analysis. A tutorial. , 2015, Analytica chimica acta.

[55]  Yufeng Chen,et al.  Parallel Optimization of Pixel Purity Index Algorithm for Hyperspectral Unmixing Based on Spark , 2015, 2015 Third International Conference on Advanced Cloud and Big Data.

[56]  Peng Gong,et al.  Modified N-FINDR endmember extraction algorithm for remote-sensing imagery , 2015 .

[57]  Antonio J. Plaza,et al.  Performance Optimizations for an Automatic Target Generation Process in Hyperspectral Analysis , 2015, Scalable Comput. Pract. Exp..

[58]  B. Krishna Mohan,et al.  Hyperspectral Image Processing and Analysis , 2015 .

[59]  Yongil Kim,et al.  Automatic Extraction of Optimal Endmembers from Airborne Hyperspectral Imagery Using Iterative Error Analysis (IEA) and Spectral Discrimination Measurements , 2015, Sensors.

[60]  Antonio J. Plaza,et al.  Real-Time Implementation of the Pixel Purity Index Algorithm for Endmember Identification on GPUs , 2014, IEEE Geoscience and Remote Sensing Letters.

[61]  Shiming Xiang,et al.  Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks , 2014, IEEE Geoscience and Remote Sensing Letters.

[62]  Gang Wang,et al.  Spectral-spatial classification of hyperspectral image using autoencoders , 2013, 2013 9th International Conference on Information, Communications & Signal Processing.

[63]  Shiming Xiang,et al.  Vehicle Detection in Satellite Images by Parallel Deep Convolutional Neural Networks , 2013, 2013 2nd IAPR Asian Conference on Pattern Recognition.

[64]  Jun Zhou,et al.  Salient object detection in hyperspectral imagery , 2013, 2013 IEEE International Conference on Image Processing.

[65]  Chein-I Chang,et al.  Finding Endmembers in Hyperspectral Imagery , 2013 .

[66]  Djemel Ziou,et al.  Is there a relationship between peak-signal-to-noise ratio and structural similarity index measure? , 2013, IET Image Process..

[67]  P. Duffy,et al.  Integration of geophysical surveys, ground hyperspectral measurements, aerial and satellite imagery for archaeological prospection of prehistoric sites: the case study of Vésztő-Mágor Tell, Hungary , 2013 .

[68]  Somdatta Chakravortty,et al.  Analysis of end member detection and subpixel classification algorithms on hyperspectral imagery for tropical mangrove species discrimination in the Sunderbans Delta, India , 2013 .

[69]  G J Edelman,et al.  Hyperspectral imaging for non-contact analysis of forensic traces. , 2012, Forensic science international.

[70]  Jeeseong Hwang,et al.  Absorption-Based Hyperspectral Imaging and Analysis of Single Erythrocytes , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[71]  Mohammed Hassan,et al.  Structural Similarity Measure for Color Images , 2012 .

[72]  A. Plaza,et al.  On Endmember Identification in Hyperspectral Images Without Pure Pixels: A Comparison of Algorithms , 2012, Journal of Mathematical Imaging and Vision.

[73]  Michael S. Brown,et al.  Visual enhancement of old documents with hyperspectral imaging , 2011, Pattern Recognit..

[74]  Ayan Chakrabarti,et al.  Statistics of real-world hyperspectral images , 2011, CVPR 2011.

[75]  Joseph F. Knight,et al.  Mapping Impervious Cover Using Multi-Temporal MODIS NDVI Data , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[76]  Antonio Plaza,et al.  GPU implementation of the pixel purity index algorithm for hyperspectral image analysis , 2010, 2010 IEEE International Conference On Cluster Computing Workshops and Posters (CLUSTER WORKSHOPS).

[77]  H. Abdi,et al.  Principal component analysis , 2010 .

[78]  Konstantinos Kalpakis,et al.  Fast Algorithms to Implement N-FINDR for Hyperspectral Endmember Extraction , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[79]  Antonio J. Plaza,et al.  FPGA Implementation of the Pixel Purity Index Algorithm for Remotely Sensed Hyperspectral Image Analysis , 2010, EURASIP J. Adv. Signal Process..

[80]  James Demmel,et al.  the Parallel Computing Landscape , 2022 .

[81]  Manuel Graña,et al.  Endmember Extraction Methods: A Short Review , 2008, KES.

[82]  Antonio J. Plaza,et al.  Parallel Implementation of Target and Anomaly Detection Algorithms for Hyperspectral Imagery , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[83]  David S. Doermann,et al.  Multi-scale Structural Saliency for Signature Detection , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[84]  Antonio J. Plaza,et al.  FPGA-Based Hyperspectral Data Compression Using Spectral Unmixing and the Pixel Purity Index Algorithm , 2006, International Conference on Computational Science.

[85]  Miguel Velez-Reyes,et al.  An algorithm for fully constrained abundance estimation in hyperspectral unmixing , 2005 .

[86]  Chein-I Chang,et al.  Fast implementation of pixel purity index algorithm , 2005 .

[87]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[88]  Miguel Velez-Reyes,et al.  Solving adundance estimation in hyperspectral unmixing as a least distance problem , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[89]  Kinjiro Amano,et al.  Information limits on neural identification of colored surfaces in natural scenes , 2004, Visual Neuroscience.

[90]  Chein-I Chang,et al.  Automatic spectral target recognition in hyperspectral imagery , 2003 .

[91]  Flávio P. Ferreira,et al.  Statistics of spatial cone-excitation ratios in natural scenes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[92]  James V. Stone Independent component analysis: an introduction , 2002, Trends in Cognitive Sciences.

[93]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[94]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[95]  D. C. Heinz,et al.  Fully constrained least-squares based linear unmixing [hyperspectral image classification] , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[96]  J. Boardman,et al.  Geometric mixture analysis of imaging spectrometry data , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[97]  M. J. Quinn,et al.  Parallel Computing: Theory and Practice , 1994 .

[98]  Ke-wen Xia,et al.  HyperViTGAN: Semisupervised Generative Adversarial Network With Transformer for Hyperspectral Image Classification , 2022, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[99]  Mercedes Eugenia Paoletti,et al.  Fast Orthogonal Projection for Hyperspectral Unmixing , 2022, IEEE Transactions on Geoscience and Remote Sensing.

[100]  Jie Chen,et al.  Object Detection in Hyperspectral Images , 2021, IEEE Signal Processing Letters.

[101]  Meiping Song,et al.  Orthogonal Subspace Projection Target Detector for Hyperspectral Anomaly Detection , 2021, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[102]  Introduction To Hyperspectral Image Analysis , 2021 .

[103]  Elif Derya Übeyli,et al.  Recurrent Neural Networks , 2018 .

[104]  Xiao Xiang Zhu,et al.  Deep Recurrent Neural Networks for Hyperspectral Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[105]  Maria Fernanda Pimentel,et al.  Projection pursuit and PCA associated with near and middle infrared hyperspectral images to investigate forensic cases of fraudulent documents , 2017 .

[106]  Chein-I Chang,et al.  Real-Time Progressive Hyperspectral Image Processing , 2016 .

[107]  Nicolas Dobigeon,et al.  Linear and nonlinear unmixing in hyperspectral imaging , 2016 .

[108]  Jan G. P. W. Clevers,et al.  Multisensor and multiresolution image fusion using the linear mixing model , 2008 .

[109]  Jitendra R. Raol,et al.  Least squares methods , 2004 .

[110]  G. Girouard,et al.  Validated Spectral Angle Mapper Algorithm for Geological Mapping : Comparative Study between Quickbird and Landsat-TM , 2004 .

[111]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..