Ontology Design for Scientific Theories That Make Probabilistic Predictions

A multidimensional ontology design paradigm based on Aristotelian definitions provides knowledge structure necessary for testing scientific theories that make probabilistic predictions.

[1]  David Poole,et al.  A framework for ontologically-grounded probabilistic matching , 2010, Int. J. Approx. Reason..

[2]  G. Papagounos On Theoretical Terms , 1990 .

[3]  Peter Urbach,et al.  Scientific Reasoning: The Bayesian Approach , 1989 .

[4]  Andrew McCallum,et al.  Introduction to Statistical Relational Learning , 2007 .

[5]  Luc De Raedt,et al.  Probabilistic Inductive Logic Programming , 2004, Probabilistic Inductive Logic Programming.

[6]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[7]  A. V. Okulitch,et al.  A preliminary scheme for multihierarchical rock classification for use with thematic computer-based query systems , 2002 .

[8]  C. Worth,et al.  On theoretical terms , 1984 .

[9]  Mark A. Bedau,et al.  Blackwell Guide to the Philosophy of Computing and Information , 2003 .

[10]  Thomas Lukasiewicz Uncertainty Reasoning for the Semantic Web , 2009, RR.

[11]  David Poole,et al.  Semantic Science: Ontologies, Data and Probabilistic Theories , 2008, URSW.

[12]  Thomas Lukasiewicz,et al.  Expressive probabilistic description logics , 2008, Artif. Intell..

[13]  Paulo Cesar G. da Costa,et al.  PR-OWL: A Bayesian Ontology Language for the Semantic Web , 2005, ISWC-URSW.

[14]  Barry Smith,et al.  The Logic of Biological Classification and the Foundations of Biomedical Ontology , 2010 .

[15]  James Hendler,et al.  Science and the Semantic Web , 2003, Science.

[16]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[17]  Deborah L. McGuinness,et al.  Semantically-Enabled Large-Scale Science Data Repositories , 2006, International Semantic Web Conference.