STRIPES: an efficient index for predicted trajectories

Moving object databases are required to support queries on a large number of continuously moving objects. A key requirement for indexing methods in this domain is to efficiently support both update and query operations. Previous work on indexing such databases can be broadly divided into categories: indexing the past positions and indexing the future predicted positions. In this paper we focus on an efficient indexing method for indexing the future positions of moving objects.In this paper we propose an indexing method, called STRIPES, which indexes predicted trajectories in a dual transformed space. Trajectories for objects in d-dimensional space become points in a higher-dimensional 2d-space. This dual transformed space is then indexed using a regular hierarchical grid decomposition indexing structure. STRIPES can evaluate a range of queries including time-slice, window, and moving queries. We have carried out extensive experimental evaluation comparing the performance of STRIPES with the best known existing predicted trajectory index (the TPR*-tree), and show that our approach is significantly faster than TPR*-tree for both updates and search queries.

[1]  Timos K. Sellis,et al.  Spatio-temporal indexing for large multimedia applications , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[2]  Walid G. Aref,et al.  Query Indexing and Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on Moving Objects , 2002, IEEE Trans. Computers.

[3]  Mario A. López,et al.  The Effect of Buffering on the Performance of R-Trees , 2000, IEEE Trans. Knowl. Data Eng..

[4]  Divyakant Agrawal,et al.  Storage and Retrieval of Moving Objects , 2001, Mobile Data Management.

[5]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[6]  Dimitrios Gunopulos,et al.  On indexing mobile objects , 1999, PODS '99.

[7]  Sukho Lee,et al.  Indexing the current positions of moving objects using the lazy update R-tree , 2002, Proceedings Third International Conference on Mobile Data Management MDM 2002.

[8]  Özgür Ulusoy,et al.  A Quadtree-Based Dynamic Attribute Indexing Method , 1998, Comput. J..

[9]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[10]  Walid G. Aref,et al.  Spatio-Temporal Access Methods , 2003, IEEE Data Eng. Bull..

[11]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[12]  Jignesh M. Patel,et al.  Indexing Large Trajectory Data Sets With SETI , 2003, CIDR.

[13]  Mario A. Nascimento,et al.  Towards historical R-trees , 1998, SAC '98.

[14]  Yannis Theodoridis,et al.  Evaluation of Access Structures for Discretely Moving Points , 1999, Spatio-Temporal Database Management.

[15]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[16]  Yufei Tao,et al.  MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries , 2001, VLDB.

[17]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[18]  Hanan Samet,et al.  Speeding up construction of PMR quadtree-based spatial indexes , 2002, The VLDB Journal.

[19]  Pankaj K. Agarwal,et al.  STAR-Tree: An Efficient Self-Adjusting Index for Moving Objects , 2002, ALENEX.

[20]  Yannis Manolopoulos,et al.  Spatiotemporal Access Methods , 2000 .

[21]  Sharad Mehrotra,et al.  Querying Mobile Objects in Spatio-Temporal Databases , 2001, SSTD.

[22]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[23]  Markus Schneider,et al.  A foundation for representing and querying moving objects , 2000, TODS.

[24]  H. V. Jagadish,et al.  On Indexing Line Segments , 1990, VLDB.

[25]  Pankaj K. Agarwal,et al.  Indexing moving points (extended abstract) , 2000, PODS '00.

[26]  Panos Kalnis,et al.  Indexing spatio-temporal data warehouses , 2002, Proceedings 18th International Conference on Data Engineering.

[27]  R. Bellman,et al.  V. Adaptive Control Processes , 1964 .

[28]  Amit P. Sheth,et al.  Semantic (Web) Technology In Action: Ontology Driven Information Systems for Search, Integration and Analysis , 2003, IEEE Data Eng. Bull..

[29]  Evaggelia Pitoura,et al.  Locating Objects in Mobile Computing , 2001, IEEE Trans. Knowl. Data Eng..

[30]  Mong-Li Lee,et al.  Supporting Frequent Updates in R-Trees: A Bottom-Up Approach , 2003, VLDB.

[31]  Bo Xu,et al.  Moving objects databases: issues and solutions , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[32]  Peter Z. Revesz,et al.  Parametric Rectangles: A Model for Querying and Animation of Spatiotemporal Databases , 2000, EDBT.

[33]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[34]  Christian S. Jensen,et al.  Indexing of moving objects for location-based services , 2002, Proceedings 18th International Conference on Data Engineering.

[35]  Irene Gargantini,et al.  An effective way to represent quadtrees , 1982, CACM.

[36]  David J. DeWitt,et al.  Shoring up persistent applications , 1994, SIGMOD '94.

[37]  Toshio Odanaka,et al.  ADAPTIVE CONTROL PROCESSES , 1990 .

[38]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[39]  Nick Roussopoulos,et al.  SEB-tree: An Approach to Index Continuously Moving Objects , 2003, Mobile Data Management.

[40]  Jimeng Sun,et al.  The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries , 2003, VLDB.

[41]  Nick Roussopoulos,et al.  Hashing Moving Objects , 2001, Mobile Data Management.