A systematic study of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher-derivative methods. Linear polyatomic molecules

The inclusion of the anharmonicity of molecular vibrations is an important aspect of the goal of making highly accurate theoreticalpredictions of the spectroscopic properties of molecules. Recently developed analytic third derivative methods for selfconsistent-field(SCF) wavefunctions have made it possible to determine the complete cubic and quartic force fields of polyatomic molecules, thus allowing the treatment of anharmonic effects. Here we continue our systematic evaluation of the performance of such theoretical methods by studying several linear molecules which are well characterized experimentally, viz., HCN, DCN, CO2, N2O, OCS, C2H2, and C2D2. A number of anharmonic molecular properties have been determined, including vibration-rotation interaction constants, vibrational anharmonic constants, fundamental vibrational frequencies, sextic centrifugal distortion constants, rotational constants which include zero-point vibrational corrections, and vibrational and rotational l-type doubling constants. These anharmonic molecular constants are not as well converged with respect to basis set enlargement as those which were previously determined for asymmetric top molecules, apparently because all the molecules considered here contain multiple bonds. However, the reported anharmonic constants at the SCF level of theory are still in reasonably good agreement with the corresponding experimental constants. Significant improvements in accuracy are achieved by incorporating electron correlation at the configuration interaction singles and doubles (CISD) level of theory. Standard spectroscopic perturbationtheory methods are used in this study, which are directly and immediately applicable to larger molecular systems than those studied here.

[1]  P. Pulay,et al.  A systematic study of the convergence and additivity of correlation and basis set effects on the force constants of small molecules: HF, HCN, and NH3 , 1983 .

[2]  M. Crofton,et al.  Infrared spectrum of the fundamental vibration–rotation band of OD− , 1986 .

[3]  H. Schaefer,et al.  Analytic third derivatives for self‐consistent‐field wave functions , 1984 .

[4]  J. Watson Vibrational Spectra and Structure , 1977 .

[5]  J. L. Duncan,et al.  High-resolution infrared spectrum and rotational constants of ethylene-H4 , 1972 .

[6]  D. Lide,et al.  Microwave and Infrared Measurements on HCN and DCN: Observations on l‐Type Resonance Doublets , 1967 .

[7]  W. C. Lineberger,et al.  Laser photoelectron spectroscopy of the formyl anion , 1986 .

[8]  J. G. Smith,et al.  An anharmonic force field for carbonyl sulphide , 1975 .

[9]  R. Saykally,et al.  Velocity‐modulated infrared laser spectroscopy of molecular ions: The ν1 band of HNN+ , 1983 .

[10]  J. Johns,et al.  Laser magnetic resonance spectroscopy of the ν2 fundamental band of HCO at 9.25 μm , 1977 .

[11]  Y. Lee,et al.  The vibrational predissociation spectroscopy of hydrogen cluster ions , 1985 .

[12]  J. Owrutsky,et al.  Velocity modulation infrared laser spectroscopy and structure of the amide anion (NH−2 ) , 1986 .

[13]  D. Whiffen,et al.  The anharmonic force field of nitrous oxide , 1982 .

[14]  A. Mckellar,et al.  Laser magnetic resonance spectroscopy of the ν1 and ν3 fundamental bands of DCO , 1981 .

[15]  Henry F. Schaefer,et al.  A systematic theoretical study of harmonic vibrational frequencies: The ammonium ion NH4+ and other simple molecules , 1980 .

[16]  H. Schaefer,et al.  Methylene: A Paradigm for Computational Quantum Chemistry , 1986, Science.

[17]  Ian M. Mills,et al.  Anharmonic force constant calculations , 1972 .

[18]  Richard M. Badger,et al.  The Relation Between the Internuclear Distances and Force Constants of Molecules and Its Application to Polyatomic Molecules , 1935 .

[19]  Takeshi Oka,et al.  Stark-Zeeman Effects on Asymmetric Top Molecules. Formaldehyde H2CO. , 1960 .

[20]  D. Truhlar,et al.  Anharmonic force constants of polyatomic molecules. Test of the procedure for deducing a force field from the vibration-rotation spectrum , 1976 .

[21]  Y. Morino,et al.  Anharmonic Potential Constants and Vibrational and Rotational Parameters for Hydrogen Cyanide , 1969 .

[22]  Bernard R. Brooks,et al.  Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach , 1980 .

[23]  W. C. Ermler,et al.  Polyatomic, anharmonic, vibrational–rotational analysis. Application to accurate ab initio results for formaldehyde , 1985 .

[24]  E. K. Plyler,et al.  SOME INFRARED BANDS OF DEUTERIUM SULFIDE , 1957 .

[25]  H. Schaefer,et al.  Analytic evaluation and basis set dependence of intensities of infrared spectra , 1986 .

[26]  D. E. Milligan,et al.  Matrix‐Isolation Study of the Infrared and Ultraviolet Spectra of the Free Radical HCO. The Hydrocarbon Flame Bands , 1969 .

[27]  David M. Dennison,et al.  The Water Vapor Molecule , 1940 .

[28]  G. Herzberg,et al.  Infrared and Raman spectra of polyatomic molecules , 1946 .

[29]  P. Pulay,et al.  Cubic force constants and equilibrium geometry of methane from Hartree–Fock and correlated wavefunctions , 1978 .

[30]  N. Handy,et al.  On the necessity of f basis functions for bending frequencies , 1988 .

[31]  N. Handy,et al.  On the accuracy of higher-order force constants calculated at the self-consistent field level of theory , 1986 .

[32]  D. E. Milligan,et al.  Infrared Spectrum of HCO , 1964 .

[33]  P. Bunker,et al.  A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule , 1979 .

[34]  Y. Morino,et al.  Vibrational Dependence of the l‐Type Doubling Constants of Linear XYZ Molecules , 1966 .

[35]  C. R. Bailey,et al.  The Infrared Absorption Spectra of H2S, HDS and D2S , 1936 .

[36]  S. Kondo Empirical improvement of the anharmonic ab initio force field of methyl fluoride , 1984 .

[37]  K. Kuchitsu Calculation of the Average Structure of Ethylene , 1966 .

[38]  J. Hietanen l-Responance effects in the hot bands 3v 5 ← 2v 5, (v 4 + 2v 5) ← (v 4 + v 5) and (2v 4 + v 5) ← 2v 4 of acetylene , 1983 .

[39]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[40]  M. Crofton,et al.  Observation of the infrared spectrum of methyl cation CH+3 , 1985 .

[41]  S. Kondo,et al.  Calculation of the cubic symmetry force constants of methyl bromide and methyl chloride , 1983 .

[42]  J. Watson Determination of Centrifugal Distortion Coefficients of Asymmetric‐Top Molecules. III. Sextic Coefficients , 1968 .

[43]  T. Oka Microwave Spectrum of Formaldehyde II. Molecular Structure in the Ground State , 1960 .

[44]  R. Bartlett,et al.  The quartic force field of H2O determined by many‐body methods that include quadruple excitation effects , 1979 .

[45]  I. Mills,et al.  The anharmonic force field and equilibrium structure of HCN and HCP , 1973 .

[46]  J. Gillis,et al.  Analysis of 2ν2, ν1, and ν3 of H2S☆ , 1981 .

[47]  S. Peyerimhoff,et al.  Theoretical Study of the Geometry and Spectrum of Nitrous Oxide , 1968 .

[48]  Gilbert W. King,et al.  The Asymmetric Rotor I. Calculation and Symmetry Classification of Energy Levels , 1943 .

[49]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[50]  K. Evenson,et al.  The rotational spectrum and hyperfine structure of the methylene radical CH2 studied by far‐infrared laser magnetic resonance spectroscopy , 1982 .

[51]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[52]  J. Watson,et al.  Calculated sextic centrifugal distortion constants of polyatomic molecules , 1976 .

[53]  J. Duncan,et al.  Ground state rotational constants of H2CCD2 and C2D4 and geometry of ethylene , 1972 .

[54]  M. Crofton,et al.  Infrared spectra of carboions. II. ν3 band of acetylene ion C2H+2(2Πu) , 1987 .

[55]  C. Moore,et al.  Collision complex formation in the reactions of formyl radicals with nitric oxide and oxygen , 1984 .

[56]  G. Diercksen,et al.  SCF-CI studies on the electronic ground state of water: Potential energy hypersurface and spectroscopic constants , 1978 .

[57]  H. Schaefer,et al.  Unified theoretical treatment of analytic first and second energy derivatives in open-shell Hartree—Fock theory , 1982 .

[58]  H. Schaefer,et al.  Analytic energy third derivatives for open-shell self-consistent-field wavefunctions , 1986 .

[59]  H. W. Schrötter,et al.  Determination of anharmonicity constants from the Raman spectrum of gaseous acetylene , 1981 .

[60]  R. Dixon Anharmonic potential constants for CH stretching in the HCO radical , 1969 .

[61]  P. Botschwina,et al.  Vibrational frequencies from anharmonic ab initio/empirical potential energy functions: Stretching vibrations of hydroisocyanic acid, phosphaethyne, isocyanoacetylene, and phosphabutadiyne , 1983 .

[62]  M. Marshall,et al.  The ν2 fundamental band of triplet CH2 , 1986 .

[63]  S. Clough,et al.  Microwave Spectrum and Rotational Constants for the Ground State of D2O , 1970 .

[64]  Toru Nakagawa,et al.  Band contour analysis of the nu1 and nu5 fundamentals of formaldehyde , 1971 .

[65]  H. Petek,et al.  Infrared flash kinetic spectroscopy: the .nu.1 and .nu.3 spectra of singlet methylene , 1983 .

[66]  Rodney J. Bartlett,et al.  Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .

[67]  A. Mckellar,et al.  Detection of the ν2 bands of CD2 and CH2 by infrared diode laser spectroscopy , 1983 .

[68]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[69]  H. Schaefer,et al.  Analytic second derivatives in restricted Hartree–Fock theory. A method for high‐spin open‐shell molecular wave functions , 1982 .

[70]  H. Schaefer,et al.  Generalization of analytic energy third derivatives for the RHF closed‐shell wave function: Derivative energy and integral formalisms and the prediction of vibration–rotation interaction constants , 1986 .

[71]  H. Schaefer,et al.  Analytical energy third derivatives for two-configuration self-consistent-field wavefunctions , 1988 .

[72]  A. Douglas,et al.  Rotation‐Vibration Spectra of Diatomic and Simple Polyatomic Molecules with Long Absorbing Paths. IX. The Spectra of the HCN and DCN Molecules from 2.5μ to 0.5μ , 1953 .

[73]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[74]  G. Ewing,et al.  Infrared Detection of the Formyl Radical HCO , 1960 .

[75]  Y. Morino,et al.  Coriolis interactions in the ν4 and ν6 bands of formaldehyde , 1971 .

[76]  J. Bowman,et al.  Ab initio simulation of the photoelectron spectra of HCO− and DCO− , 1987 .

[77]  J. Shirk,et al.  Potential functions and the bonding in the XCO free radicals , 1968 .

[78]  N. Handy,et al.  On the high accuracy of mp2-optimised geometmes and harmonic frequencies with large basis sets , 1987 .

[79]  R. Bruns,et al.  Calculated Dipole‐Moment Functions and the Infrared Intensities of HCN and N2O , 1970 .

[80]  E. Hirota Third-order anharmonic potential constants and equilibrium structures of the formyl and hydroperoxyl radicals , 1986 .

[81]  J. Duncan,et al.  The general harmonic force field of formaldehyde , 1973 .

[82]  H. Petek,et al.  Visible absorption and magnetic‐rotation spectroscopy of 1CH2: Analysis of the 1A1 state and the 1A1–3B1 coupling , 1987 .

[83]  J. Brown,et al.  Axis Switching in the Transition of HCO: Determination of Molecular Geometry , 1975 .

[84]  J. L. Duncan,et al.  Infrared crystal spectra of C2H4, C2D4, and as-C2H2D2 and the general harmonic force field of ethylene , 1973 .

[85]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[86]  N. Handy,et al.  Ab initio quadratic, cubic and quartic force constants for the calculation of spectroscopic constants , 1985 .

[87]  H. H. Nielsen The Vibration-Rotation Energies of Polyatomic Molecules Part II. Accidental Degeneracies , 1945 .

[88]  Poul Jørgensen,et al.  Geometrical derivatives of energy surfaces and molecular properties , 1986 .

[89]  C. B. Dane,et al.  Infrared flash kinetic spectroscopy of HCO , 1988 .

[90]  P. Bunker,et al.  The rigid bender and semirigid bender models for the rotation-vibration Hamiltonian , 1977 .

[91]  Kevin M. Dunn,et al.  Vibrational energy levels of hydrogen cyanide , 1986 .

[92]  P. Botschwina,et al.  Ab initio calculation of potential energy surfaces and spectroscopic properties of H2S and H3S , 1986 .

[93]  Lawrence B. Harding,et al.  Ab initio calculations of electronic and vibrational energies of HCO and HOC , 1986 .

[94]  W. D. Allen,et al.  The analytic evaluation of energy first derivatives for two‐configuration self‐consistent‐field configuration interaction (TCSCF‐CI) wave functions. Application to ozone and ethylene , 1987 .

[95]  M. Lacy The anharmonic force field of carbon dioxide , 1982 .

[96]  J. L. Kinsey,et al.  Stimulated emission spectroscopy: A complete set of vibrational constants for X̃ 1A1 formaldehyde , 1984 .

[97]  P. Jensen,et al.  The nonrigid bender Hamiltonian using an alternative perturbation technique , 1986 .

[98]  P. Jensen,et al.  The potential surface of X̃ 3B1 methylene (CH2) and the singlet–triplet splitting , 1986 .

[99]  K. G. Brown,et al.  Ab initio calculations of vibrational properties of some linear triatomic molecules. 2. Anharmonic force fields , 1981 .

[100]  R. Cook,et al.  Submillimeter Microwave Spectrum ofH2O16 , 1972 .

[101]  A. D. McLean,et al.  An abinitio calculation of ν1 and ν3 for triplet methylene (X̃ 3B1 CH2) and the determination of the vibrationless singlet–triplet splitting Te(ã 1A1) , 1987 .

[102]  W. C. Ermler,et al.  Ab initio SCF and CI studies on the ground state of the water molecule. II. Potential energy and property surfaces , 1976 .

[103]  S. Huzinaga,et al.  Gaussian‐Type Functions for Polyatomic Systems. II , 1970 .

[104]  P. Jensen,et al.  A refined potential surface for the X̃ 3B1 electronic state of methylene CH2 , 1983 .

[105]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[106]  J. Plíva,et al.  Anharmonic potential functions of polyatomic molecules , 1967 .

[107]  H. Schaefer,et al.  Radiative decay lifetimes of CH−2 , 1987 .

[108]  J. Lademann,et al.  Laser-induced fluorescence detection of HCO produced by laser photolysis of formaldehyde , 1983 .

[109]  H. H. Nielsen The Vibration-Rotation Energies of Molecules , 1951 .

[110]  Yumiko Tanaka,et al.  Anharmonic potential function of formaldehyde , 1977 .

[111]  Julia E. Rice,et al.  The closed‐shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results , 1987 .

[112]  John M. Brown,et al.  The laser magnetic resonance spectrum of the HCO radical at 5.3 μm , 1980 .

[113]  W. C. Lineberger,et al.  Infrared spectrum and autodetachment dynamics of NH , 1985 .

[114]  J. Watson Determination of Centrifugal Distortion Coefficients of Asymmetric‐Top Molecules , 1967 .

[115]  E. Bright Wilson,et al.  The Vibration‐Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules , 1936 .

[116]  F. D. Lucia,et al.  Microwave spectra of molecules of astrophysical interest. 4. Hydrogen sulfide. , 1973 .

[117]  A. Dymanus,et al.  Stark effect of millimeter wave transitions : I. Hydrogen sulfide , 1965 .

[118]  D. Papoušek,et al.  Molecular vibrational-rotational spectra , 1982 .

[119]  H. Schaefer,et al.  The analytic configuration interaction gradient method: Application to the cyclic and open isomers of the S3 molecule , 1986 .

[120]  W. Meerts,et al.  Hyperfine structure, electric and magnetic properties of 14N2 16O in the ground and first excited bending vibrational state , 1978 .

[121]  Peter Pulay,et al.  Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene , 1983 .

[122]  N. Moncur,et al.  Ground‐State Molecular Constants of Hydrogen Telluride , 1967 .

[123]  P. Jensen The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule , 1983 .

[124]  M. Gruebele,et al.  Velocity modulation laser spectroscopy of negative ions: The infrared spectrum of hydrosulfide (SH−) , 1986 .

[125]  H. Schaefer,et al.  Second-order perturbation theory and configuration interaction theory applied to medium-sized molecules: cyclopropane, ethylenimine, ethylene oxide, fluoroethane, and acetaldehyde , 1988 .

[126]  A. D. McLean,et al.  Molecular orbital predictions of the vibrational frequencies of some molecular ions. , 1985, The Journal of chemical physics.

[127]  K. Kawaguchi,et al.  Infrared diode laser study of the hydrogen bifluoride anion: FHF− and FDF− , 1986 .

[128]  Robert L. Cook,et al.  Molecular force field and structure of hydrogen sulfide: recent microwave results , 1975 .

[129]  P. Jensen,et al.  The equilibrium geometry, potential function, and rotation‐vibration energies of CH2 in the X̃ 3B1 ground state , 1982 .

[130]  R. Cook,et al.  Microwave spectrum and centrifugal distortion effects of HDS , 1971 .

[131]  A. J. Merer,et al.  Infrared spectroscopy of short-lived molecules: Observation of the ν2 fundamental of HCO by laser electric resonance , 1977 .

[132]  H. Schaefer,et al.  The efficient evaluation of configuration interaction analytic energy second derivatives: Application to hydrogen thioperoxide, HSOH , 1986 .

[133]  D. M. Dennison The Vibrational Levels of Linear Symmetrical Triatomic Molecules , 1932 .

[134]  G. Fogarasi,et al.  On the use of scaled quantum mechanical force fields for predicting quartic centrifugal distortion constants , 1988 .

[135]  J. Pople,et al.  Derivative studies in configuration–interaction theory , 1980 .

[136]  H. Schaefer,et al.  Analytic energy second derivatives for general correlated wavefunctions, including a solution of the first-order coupled-perturbed configuration-interaction equations , 1983 .

[137]  S. Carter,et al.  Potential models and local mode vibrational eigenvalue calculations for acetylene , 1982 .

[138]  J. Owrutsky,et al.  The vibration-rotation spectrum of the hydroxide anion (OH - ) , 1985 .

[139]  T. Oka Vibration—Rotation Interaction in Symmetric‐Top Molecules and the Splitting between A1 and A2 Levels , 1967 .

[140]  T. A. Wiggins,et al.  Rotation–Vibration Constants of Acetylene* , 1963 .

[141]  L. J. Schaad,et al.  Ab initio calculations of vibrational spectra and their use in the identification of unusual molecules , 1986 .

[142]  P. Bunker,et al.  Analysis of the laser photoelectron spectrum of CH−2 , 1985 .

[143]  Takeshi Oka,et al.  Millimeter Wave Spectrum of Formaldehyde , 1963 .

[144]  M. Bogey,et al.  Millimeter and submillimeter wave spectrum of HCNH , 1985 .

[145]  I. Shavitt Geometry and singlet−triplet energy gap in methylene: a critical review of experimental and theoretical determinations , 1985 .

[146]  William H. Kirchhoff,et al.  Microwave Spectra of Molecule$ of Astrophysical·lnterest I. Formaldehyde, Formamide, and Thioformaldehyde , 1972 .

[147]  B. Saksena Rotation‐Vibration Spectra of Diatomic and Simple Polyatomic Molecules with Long Absorbing Paths VII. The Spectrum of Dideuteroacetylene (C2D2) in the Photographic Infrared , 1952 .

[148]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[149]  S. Langhoff,et al.  On the 1A1–3B1 separation in CH2 and SiH2 , 1987 .

[150]  J. W. C. Johns,et al.  The spectrum of natural hydrogen sulfide between 2150 and 2950 cm−1 , 1984 .

[151]  V. P. Spiridonov,et al.  Anharmonic force field of CO2 as determined by a gas-phase electron diffraction study , 1983 .

[152]  S. Kondo,et al.  Ab initio MO calculation of the anharmonic force field of methyl fluoride and methyl chloride , 1984 .

[153]  J. Watson Centrifugal Corrections for Asymmetric‐Top Molecules , 1966 .

[154]  M. Crofton,et al.  Infrared studies of molecular ions. I. The ν3 band of NH4 , 1983 .

[155]  H. H. Nielsen The Vibration-Rotation Energies of Polyatomic Molecules , 1941 .

[156]  A. H. Nielsen,et al.  Infrared Spectrum and Molecular Constants of C2D2 , 1954 .

[157]  T. J. Edwards,et al.  Analysis of ?2 of H2S , 1982 .

[158]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[159]  E. K. Plyler,et al.  Infrared Spectrum of Hydrogen Sulfide , 1956 .

[160]  H. Schlegel,et al.  Ab initio computation of force constants. The second and third period hydrides , 1975 .

[161]  John S. Muenter,et al.  Electric dipole moments of low J states of H2O and D2O , 1973 .

[162]  G. E. Leroi,et al.  INFRARED SPECTRUM OF DEUTERIUM SULFIDE. , 1967 .

[163]  Julia E. Rice,et al.  The elimination of singularities in derivative calculations , 1985 .

[164]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[165]  J. Kauppinen,et al.  High-resolution infrared spectrum of acetylene in the region of the bending fundamental v 5 , 1981 .

[166]  P. Jensen,et al.  The application of the nonrigid bender Hamiltonian to a quasilinear molecule , 1983 .

[167]  Brian C. Smith,et al.  The C–H overtone spectra of acetylene: Bend/stretch interactions below 10 000 cm−1 , 1988 .

[168]  D. G. Hopper,et al.  Theoretical and experimental studies of the N2O− and N2O ground state potential energy surfaces. Implications for the O−+N2→N2O+e and other processes , 1976 .

[169]  E. Fermi Über den Ramaneffekt des Kohlendioxyds , 1931 .

[170]  P. Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in poly-atomic molecules. II. Force constants of water , 1970 .

[171]  I. Suzuki,et al.  General Quartic Force Field of HCN , 1966 .

[172]  M. Noble,et al.  Laser-induced fluorescence emission from HCO produced by 308 nm excimer laser photodissociation of acetaldehyde☆ , 1985 .

[173]  F. X. Kneizys,et al.  Reduction of the Fourth‐Order Asymmetric‐Rotor Hamiltonian , 1966 .

[174]  H. Petek,et al.  Visible absorption and magnetic-rotation spectroscopy of 1CH2: The analysis of the b̃ 1B1 state , 1987 .

[175]  D. Steele Anharmonic force fields from ab initio calculations , 1982 .

[176]  R. Cook,et al.  Microwave Spectrum and Centrifugal Distortion Effects of H2S , 1972 .

[177]  R. Saykally,et al.  Velocity-modulated infrared laser spectroscopy of molecular ions: The nu 1 band of HCO + , 1983 .

[178]  R. M. Badger A Relation Between Internuclear Distances and Bond Force Constants , 1934 .

[179]  H. Schaefer,et al.  A New dimension to quantum chemistry: Theoretical methods for the analytic evaluation of first, second, and third derivatives of the molecular electronic energy with respect to nuclear coordinates , 1986 .

[180]  E. B. Wilson,et al.  Approximate Treatment of the Effect of Centrifugal Distortion on the Rotational Energy Levels of Asymmetric‐Rotor Molecules , 1952 .

[181]  G. Scuseria,et al.  Comparison of single and double excitation coupled cluster and configuration interaction theories: determination of structure and equilibrium propertie , 1987 .

[182]  W. Seiler,et al.  Photodissociation of HCHO in air: CO and H2 quantum yields at 220 and 300 K , 1983 .

[183]  N. Handy,et al.  Chapter 9. Derivatives of the potential energy hypersurface by analytic techniques , 1984 .

[184]  Henry F. Schaefer,et al.  Analytic second derivative techniques for self-consistent-field wave functions. A new approach to the solution of the coupled perturbed hartree-fock equations , 1983 .