Stabilization of relative equilibria for underactuated systems on Riemannian manifolds

Steady motions of mechanical systems with symmetry are stabilized via a potential shaping and damping control. A general methodology based on Riemannian geometry tools provides exponential stabilization over the full phase space.

[1]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[2]  Andrew D. Lewis,et al.  Aspects of Geometric Mechanics and Control of Mechanical Systems , 1995 .

[3]  F. Bullo Stabilization of relative equilibria for systems on Riemannian manifolds , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[4]  R. Murray,et al.  Differential Flatness of Mechanical Control Systems: A Catalog of Prototype Systems , 1995 .

[5]  Richard M. Murray,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997, SIAM Rev..

[6]  Vijay Kumar,et al.  On the generation of smooth three-dimensional rigid body motions , 1998, IEEE Trans. Robotics Autom..

[7]  M. Rathinam,et al.  Configuration flatness of Lagrangian systems underactuated by one control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[8]  S. Shankar Sastry,et al.  Nonlinear control design for slightly non-minimum phase systems: Application to V/STOL aircraft , 1992, Autom..

[9]  H. Nijmeijer,et al.  Underactuated ship tracking control: Theory and experiments , 2001 .

[10]  I. Holopainen Riemannian Geometry , 1927, Nature.

[11]  Naomi Ehrich Leonard,et al.  Matching and stabilization by the method of controlled Lagrangians , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[12]  Naomi Ehrich Leonard Stability of a bottom-heavy underwater vehicle , 1997, Autom..

[13]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[14]  Carlos Silvestre,et al.  Trajectory Tracking for Autonomous Vehicles: An Integrated Approach to Guidance and Control , 1998 .

[15]  A. Banaszuk,et al.  Approximate feedback linearization: homotopy operator approach , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[16]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[17]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[18]  John-Morten Godhavn,et al.  Nonlinear tracking of underactuated surface vessels , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[19]  Jerrold E. Marsden,et al.  Stabilization of relative equilibria , 2000, IEEE Trans. Autom. Control..

[20]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[21]  M. Berry Lectures on Mechanics , 1993 .

[22]  A. Bloch,et al.  Nonholonomic Control Systems on Riemannian Manifolds , 1995 .

[23]  Thor I. Fossen,et al.  Nonlinear Control of Underactuated Ships with Forward Speed Compensation , 1998 .

[24]  J. C. Simo,et al.  Stability of relative equilibria. Part I: The reduced energy-momentum method , 1991 .

[25]  Aristotle Arapostathis,et al.  Remarks on smooth feedback stabilization of nonlinear systems , 1986, 1986 American Control Conference.

[26]  A. J. Schaft,et al.  Stabilization of Hamiltonian systems , 1986 .

[27]  K.Y. Pettersen,et al.  Tracking control of an underactuated surface vessel , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[28]  Richard M. Murray,et al.  Tracking for fully actuated mechanical systems: a geometric framework , 1999, Autom..

[29]  V. Jurdjevic,et al.  Controllability and stability , 1978 .

[30]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[31]  Thor I. Fossen,et al.  Tutorial on nonlinear backstepping: Applications to ship control , 1999 .

[32]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[33]  Naomi Ehrich Leonard Stabilization of underwater vehicle dynamics with symmetry-breaking potentials , 1997 .

[34]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[35]  Naomi Ehrich Leonard,et al.  Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry , 1997 .

[36]  D. Koditschek The Application of Total Energy as a Lyapunov Function for Mechanical Control Systems , 1989 .

[37]  Naomi Ehrich Leonard,et al.  Stabilization of mechanical systems using controlled Lagrangians , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[38]  Philippe Martin,et al.  AIRCRAFT CONTROL USING FLATNESS , 1996 .

[39]  Naomi Ehrich Leonard,et al.  Underwater vehicle stabilization by internal rotors , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).