Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems
暂无分享,去创建一个
[1] Fred J. Hickernell,et al. On tractability of weighted integration over bounded and unbounded regions in Reals , 2004, Math. Comput..
[2] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[3] Eric Thiémard,et al. An Algorithm to Compute Bounds for the Star Discrepancy , 2001, J. Complex..
[4] Eric Thiémard. Optimal volume subintervals with k points and star discrepancy via integer programming , 2001, Math. Methods Oper. Res..
[5] Harald Niederreiter,et al. Discrepancy and convex programming , 1972 .
[6] Juraj Hromkovic,et al. Algorithmics for Hard Problems , 2004, Texts in Theoretical Computer Science. An EATCS Series.
[7] David Eppstein,et al. Computing the discrepancy with applications to supersampling patterns , 1996, TOGS.
[8] Karin Frank,et al. Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..
[9] Michael Gnewuch,et al. Construction of low-discrepancy point sets of small size , 2007 .
[10] R. Graham,et al. Handbook of Combinatorics , 1995 .
[11] K. Fang,et al. Application of Threshold-Accepting to the Evaluation of the Discrepancy of a Set of Points , 1997 .
[12] Harald Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods 2006 , 2007 .
[13] P. Gruber,et al. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .
[14] Aleksandar Kron,et al. A note on E , 1972, Notre Dame J. Formal Log..
[15] E. Haacke. Sequences , 2005 .
[16] J. Beck,et al. Discrepancy Theory , 1996 .
[17] E. Novak,et al. Foundations of Computational Mathematics: When are integration and discrepancy tractable? , 2001 .
[18] Bernard Chazelle,et al. The Discrepancy Method , 1998, ISAAC.
[19] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[20] Anand Srivastav,et al. Bounds and constructions for the star-discrepancy via ?-covers , 2005, J. Complex..
[21] David S. Johnson,et al. The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.
[22] Ronald Cools,et al. A note on E. Thiémard's algorithm to compute bounds for the star discrepancy , 2005, J. Complex..
[23] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[24] Tony Warnock,et al. Computational investigations of low-discrepancy point-sets. , 1972 .
[25] Henryk Wozniakowski,et al. Relaxed verification for continuous problems , 1992, J. Complex..
[26] George Marsaglia,et al. In: Applications of Number Theory to Numerical Analysis , 1972 .
[27] E. Novak,et al. The inverse of the star-discrepancy depends linearly on the dimension , 2001 .
[28] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[29] Michael Gnewuch. Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy , 2008, J. Complex..
[30] S. C. Zaremba. Some applications of multidimensional integration by parts , 1968 .
[31] Peter Kritzer,et al. Component-by-component construction of low-discrepancy point sets of small size , 2008, Monte Carlo Methods Appl..
[32] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[33] Yuan Wang,et al. Number-Theoretic Methods† , 2006 .
[34] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[35] Stefan Heinrich,et al. Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..
[36] Eric Thiémard. Computing Bounds for the Star Discrepancy , 2000, Computing.
[37] Benjamin Doerr,et al. Construction of Low-Discrepancy Point Sets of Small Size by Bracketing Covers and Dependent Randomized Rounding , 2008 .