Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems

The well-known star discrepancy is a common measure for the uniformity of point distributions. It is used, e.g., in multivariate integration, pseudo random number generation, experimental design, statistics, or computer graphics. We study here the complexity of calculating the star discrepancy of point sets in the d-dimensional unit cube and show that this is an NP-hard problem. To establish this complexity result, we first prove NP-hardness of the following related problems in computational geometry: Given n points in the d-dimensional unit cube, find a subinterval of minimum or maximum volume that contains k of the n points. Our results for the complexity of the subinterval problems settle a conjecture of E. Thiemard [E. Thiemard, Optimal volume subintervals with k points and star discrepancy via integer programming, Math. Meth. Oper. Res. 54 (2001) 21-45].

[1]  Fred J. Hickernell,et al.  On tractability of weighted integration over bounded and unbounded regions in Reals , 2004, Math. Comput..

[2]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[3]  Eric Thiémard,et al.  An Algorithm to Compute Bounds for the Star Discrepancy , 2001, J. Complex..

[4]  Eric Thiémard Optimal volume subintervals with k points and star discrepancy via integer programming , 2001, Math. Methods Oper. Res..

[5]  Harald Niederreiter,et al.  Discrepancy and convex programming , 1972 .

[6]  Juraj Hromkovic,et al.  Algorithmics for Hard Problems , 2004, Texts in Theoretical Computer Science. An EATCS Series.

[7]  David Eppstein,et al.  Computing the discrepancy with applications to supersampling patterns , 1996, TOGS.

[8]  Karin Frank,et al.  Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..

[9]  Michael Gnewuch,et al.  Construction of low-discrepancy point sets of small size , 2007 .

[10]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[11]  K. Fang,et al.  Application of Threshold-Accepting to the Evaluation of the Discrepancy of a Set of Points , 1997 .

[12]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2006 , 2007 .

[13]  P. Gruber,et al.  Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .

[14]  Aleksandar Kron,et al.  A note on E , 1972, Notre Dame J. Formal Log..

[15]  E. Haacke Sequences , 2005 .

[16]  J. Beck,et al.  Discrepancy Theory , 1996 .

[17]  E. Novak,et al.  Foundations of Computational Mathematics: When are integration and discrepancy tractable? , 2001 .

[18]  Bernard Chazelle,et al.  The Discrepancy Method , 1998, ISAAC.

[19]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[20]  Anand Srivastav,et al.  Bounds and constructions for the star-discrepancy via ?-covers , 2005, J. Complex..

[21]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[22]  Ronald Cools,et al.  A note on E. Thiémard's algorithm to compute bounds for the star discrepancy , 2005, J. Complex..

[23]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[24]  Tony Warnock,et al.  Computational investigations of low-discrepancy point-sets. , 1972 .

[25]  Henryk Wozniakowski,et al.  Relaxed verification for continuous problems , 1992, J. Complex..

[26]  George Marsaglia,et al.  In: Applications of Number Theory to Numerical Analysis , 1972 .

[27]  E. Novak,et al.  The inverse of the star-discrepancy depends linearly on the dimension , 2001 .

[28]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[29]  Michael Gnewuch Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy , 2008, J. Complex..

[30]  S. C. Zaremba Some applications of multidimensional integration by parts , 1968 .

[31]  Peter Kritzer,et al.  Component-by-component construction of low-discrepancy point sets of small size , 2008, Monte Carlo Methods Appl..

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  Yuan Wang,et al.  Number-Theoretic Methods† , 2006 .

[34]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[35]  Stefan Heinrich,et al.  Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..

[36]  Eric Thiémard Computing Bounds for the Star Discrepancy , 2000, Computing.

[37]  Benjamin Doerr,et al.  Construction of Low-Discrepancy Point Sets of Small Size by Bracketing Covers and Dependent Randomized Rounding , 2008 .