Design and characterization of 1.3-/spl mu/m AlGaInAs-InP multiple-quantum-well lasers

A comprehensive design method for long wavelength strained quantum-well lasers is applied to design uncooled multiple-quantum-well AlGaInAs-InP 1.3-/spl mu/m lasers for communication systems. The method includes multiband effective mass theory and electromagnetic waveguide theory. The resulting AlGaInAs-InP laser has a threshold current of 12.5 mA at 25/spl deg/C, with a slope efficiency of 0.43 W/A, at 77 K or greater characteristic temperature, a 38/spl deg/ perpendicular far-field beam divergence, and will operate at temperatures in excess of 100/spl deg/C.

[1]  L. J. Sham,et al.  Effective masses of holes at GaAs-AlGaAs heterojunctions. , 1985, Physical Review B (Condensed Matter).

[2]  Y. Uematsu,et al.  Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers , 1985, IEEE Journal of Quantum Electronics.

[3]  D. J. Robbins,et al.  Lifetime broadening in GaAs-AlGaAs quantum well lasers , 1990 .

[4]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[5]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[6]  M. Kubota,et al.  1.3-μm AlGaInAs buried-heterostructure lasers , 1999, IEEE Photonics Technology Letters.

[7]  Sadao Adachi,et al.  Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .

[8]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[9]  W. Chow,et al.  Effects of strain and Coulomb interaction on gain and refractive index in quantum-well lasers , 1993 .

[10]  T. Fujii,et al.  Observation of reduced nonradiative current in 1.3-μm AlGaInAs-InP strained MQW lasers , 1999, IEEE Photonics Technology Letters.

[11]  P. Bhattacharya,et al.  Semiconductor Optoelectronic Devices , 1993 .

[12]  Shun Lien Chuang,et al.  Theory and Experiment of In Ga As P and In Ga Al As Long-Wavelength Strained Quantum-Well Lasers , 1999 .

[13]  Chuang,et al.  Efficient band-structure calculations of strained quantum wells. , 1991, Physical review. B, Condensed matter.

[14]  R. A. Abram,et al.  A detailed study of Auger recombination in 1.3?m InGaAsP/InP quantum wells and quantum well wires , 1990 .

[15]  Rajaram Bhat,et al.  High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-x-y/As/InP strained-layer quantum-well lasers for subscriber loop applications , 1994 .

[16]  Seoung-Hwan Park,et al.  Theory and experiment of In/sub 1-x/Ga/sub x/As/sub y/P/sub 1-y/ and In/sub 1-x-y/Ga/sub x/Al/sub y/As long-wavelength strained quantum-well lasers , 1999 .

[17]  Stephan W Koch,et al.  Semiconductor-Laser Physics , 1994 .

[18]  M. Takeshima Effect of Auger recombination on laser operation in Ga1−xAlxAs , 1985 .

[19]  Peter S. Zory,et al.  A model for GRIN-SCH-SQW diode lasers , 1988 .

[20]  H. Casey,et al.  Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs , 1976 .

[21]  H. Casey,et al.  Heterostructure lasers , 1978 .

[22]  John E. Bowers,et al.  Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well , 1994 .

[23]  Henry Kressel,et al.  Semiconductor Lasers and Heterojunction LEDs , 1977 .

[24]  S. Sugou,et al.  High-temperature characteristics of 1.3-μm InAsP-InAlGaAs ridge waveguide lasers , 1999, IEEE Photonics Technology Letters.

[25]  J. Ungar,et al.  Low-threshold and high-temperature operation of InGaAlAs-InP lasers , 1997, IEEE Photonics Technology Letters.

[26]  W. Chow,et al.  Many‐body effects in the gain spectra of strained quantum wells , 1991 .

[27]  Peter S. Zory,et al.  Quantum well lasers , 1993 .