Limit curve of H-Bézier curves and rational Bézier curves in standard form with the same weight

The basis of H-Bezier curves of degree n is 1 , t , ? , t n - 2 , sinh α t and cosh α t , for t ? 0 , 1 ] . We find the limit curve of H-Bezier curves of degree n as a parameter α goes to ∞ , which is the Bezier curve of degree n - 2 , and prove it using mathematical induction and special properties of H-basis functions. We also compare it to the limit curve of rational Bezier curves of degree n in standard form with the same weight w as it goes to ∞ , which is the rational Bezier curve of degree n - 2 .

[1]  Hong-Yan Zhao,et al.  Shape Control of Cubic H-Bezier Curve by Moving Control Point ? , 2007 .

[2]  Guozhao Wang,et al.  A class of Bézier-like curves , 2003, Comput. Aided Geom. Des..

[3]  Jiwen Zheng C-Bézier curves and surfaces , 1999 .

[4]  Zhang Jiwen,et al.  C-curves: An extension of cubic curves , 1996, Comput. Aided Geom. Des..

[5]  Juan Manuel Peña,et al.  Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..

[6]  Guo-jin Wang,et al.  A new method in highway route design: joining circular arcs by a single C-Bézier curve with shape parameter , 2009 .

[7]  Gerald Farin,et al.  Curves and surfaces for cagd , 1992 .

[8]  Helmut Pottmann,et al.  Helix splines as an example of affine Tchebycheffian splines , 1994, Adv. Comput. Math..

[9]  Helmut Pottmann,et al.  The geometry of Tchebycheffian splines , 1993, Comput. Aided Geom. Des..

[10]  Jiwen Zhang,et al.  Extending cubic uniform B-splines by unified trigonometric and hyperbolic basis , 2005, Graph. Model..

[11]  Jiwen Zhang,et al.  Two different forms of C-B-splines , 1997, Comput. Aided Geom. Des..

[12]  Lanlan Yan,et al.  A class of algebraic-trigonometric blended splines , 2011, J. Comput. Appl. Math..

[13]  Huaiyu Zhang,et al.  Unifying C-curves and H-curves by extending the calculation to complex numbers , 2005, Comput. Aided Geom. Des..

[14]  Guozhao Wang,et al.  Paths of C-Bézier and C-B-spline curves , 2006, Comput. Aided Geom. Des..

[15]  Juan Manuel Peña,et al.  A basis of C-Bézier splines with optimal properties , 2002, Comput. Aided Geom. Des..

[16]  Marie-Laurence Mazure,et al.  Chebyshev-Bernstein bases , 1999, Comput. Aided Geom. Des..

[17]  Ping Zhu,et al.  Degree elevation operator and geometric construction of C-B-spline curves , 2010, Science China Information Sciences.

[18]  Rida T. Farouki,et al.  The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..

[19]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[20]  Guozhao Wang,et al.  Uniform hyperbolic polynomial B-spline curves , 2002, Comput. Aided Geom. Des..

[21]  Qinmin Yang,et al.  Inflection points and singularities on C-curves , 2004, Comput. Aided Geom. Des..

[22]  Jiwen Zhang,et al.  C-Bézier Curves and Surfaces , 1999, Graph. Model. Image Process..

[23]  Helmut Pottmann,et al.  Symmetric Tchebycheffian B-spline schemes , 1994 .