High-voltage NASICON Sodium Ion Batteries: Merits of Fluorine Insertion

[1]  Xiaobo Ji,et al.  A study into the extracted ion number for NASICON structured Na₃V₂(PO₄)₃ in sodium-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[2]  Lin Gu,et al.  Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium‐Ion Batteries , 2014 .

[3]  Xiaobo Ji,et al.  Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries , 2014 .

[4]  Jun Chen,et al.  Aqueous Sodium‐Ion Battery using a Na3V2(PO4)3 Electrode , 2014 .

[5]  Xiaobo Ji,et al.  First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3 , 2014 .

[6]  Craig E. Banks,et al.  Multifunctional dual Na3V2(PO4)2F3 cathode for both lithium-ion and sodium-ion batteries , 2014 .

[7]  Xiaobo Ji,et al.  Na2FePO4F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability , 2014 .

[8]  Xiaobo Ji,et al.  A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries. , 2014, Physical chemistry chemical physics : PCCP.

[9]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[10]  Xiaobo Ji,et al.  A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[11]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[12]  S. Shi,et al.  Li2NaV2(PO4)3: a Novel Composite Cathode Material with high ratio of Rhombohedral Phase , 2013 .

[13]  S. Okada,et al.  Cathode properties of Na3M2(PO4) 2F3 [M = Ti, Fe, V] for sodium-ion batteries , 2013 .

[14]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[15]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[16]  K. Du,et al.  Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries , 2013 .

[17]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[18]  Pierre Kubiak,et al.  High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x , 2012 .

[19]  Alok Kumar Rai,et al.  High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries , 2012 .

[20]  Dong-Hwa Seo,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[21]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[22]  C. Masquelier,et al.  α-Na3M2(PO4)3 (M = Ti, Fe): absolute cationic ordering in NASICON-type phases. , 2011, Journal of the American Chemical Society.

[23]  Xin-guo Hu,et al.  High performance Li3V2(PO4)3/C composite cathode material for lithium ion batteries studied in pilot scale test , 2010 .

[24]  Hyun-Wook Lee,et al.  Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. , 2010, Nano letters.

[25]  Yang-Kook Sun,et al.  Nanostructured Anode Material for High‐Power Battery System in Electric Vehicles , 2010, Advanced materials.

[26]  M. Armand,et al.  Ionothermal Synthesis of Li-Based Fluorophosphates Electrodes † , 2010 .

[27]  Tao Jiang,et al.  Sol–gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries , 2009 .

[28]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[29]  L. Nazar,et al.  Layered Lithium Vanadium Fluorophosphate, Li5V(PO4)2F2: A 4 V Class Positive Electrode Material for Lithium-Ion Batteries , 2008 .

[30]  Ying Wang,et al.  Preparation of NaV1−xAlxPO4F cathode materials for application of sodium-ion battery , 2008 .

[31]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[32]  Jeremy Barker,et al.  The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3 , 2006 .

[33]  Jeremy Barker,et al.  Electrochemical Insertion Properties of the Novel Lithium Vanadium Fluorophosphate, LiVPO4 F , 2003 .

[34]  J. Barker,et al.  Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries , 2003 .

[35]  A. Hémon-Ribaud,et al.  Phase Transitions in the Na3M2(PO4)2F3 Family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, Thermal, Structural, and Magnetic Studies , 1999 .

[36]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[37]  J. Gopalakrishnan,et al.  Vanadium phosphate (V2(PO4)3): a novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3) , 1992 .

[38]  Suqin Liu,et al.  A sodium vanadium three-fluorophosphate cathode for rechargeable batteries synthesized by carbothermal reduction , 2013 .

[39]  Soo Yeon Lim,et al.  Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study , 2012 .

[40]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[41]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.