Repair of Articular Cartilage Defects One Year After Treatment with Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2)*

Background: Damaged articular cartilage has a limited ability to repair. Operative removal of damaged cartilage and penetration into the subchondral bone to allow population of the defect with progenitor cells can result in filling of the defect with repair tissue. However, this repair tissue often degenerates over time because of its inability to withstand the mechanical forces to which it is subjected. We previously reported that recombinant human bone morphogenetic protein-2 (rhBMP-2) improves the repair of full-thickness defects of cartilage as long as six months postoperatively. We have now extended that study to examine the quality of the repair tissue at one year. Methods: Full-thickness defects of cartilage were created in the trochlear groove of twenty-five adult New Zealand White rabbits. Eight defects were left empty, eight were filled with a collagen sponge, and nine were filled with a collagen sponge impregnated with five micrograms of rhBMP-2. The animals were killed at fifty-two weeks postoperatively, and the gross appearance of the healed defect was assessed. The repair tissue was examined histologically and was evaluated, according to a grading scale, by four individuals who were blinded with respect to the treatment. The tissue sections were immunostained with antibodies against type-I collagen, type-II collagen, aggrecan, and link protein. The residence time of the rhBMP-2 in the cartilage defect was evaluated in vivo with use of scintigraphic imaging of radiolabeled protein. Results: One year after a single implantation of a collagen sponge containing five micrograms of rhBMP-2, the defects had a significantly better histological appearance than the untreated defects (those left empty or filled with a collagen sponge). The histological features that showed improvement were integration at the margin, cellular morphology, architecture within the defect, and reformation of the tidemark. The total scores were also better for the defects treated with rhBMP-2 than for the untreated defects, but in no instance was the repair tissue identical to normal articular cartilage. The thickness of the cartilage in the defects treated with rhBMP-2 was 70 percent that of the normal cartilage, an observation that was identical to that at twenty-four weeks postoperatively. Immunostaining demonstrated significantly less type-I collagen in the defects treated with rhBMP-2 than in the untreated defects. Immunostaining for other matrix components showed no difference among the treatment groups. The mean residence time of rhBMP-2 in the cartilage defects was eight days with an elimination half-life of 5.6 days. Detectable amounts of rhBMP-2 were present as long as fourteen days after implantation. Conclusions: The problems associated with operative repair of cartilage include the formation of fibrocartilage rather than normal articular cartilage and the degeneration of that repair tissue over time. Our results demonstrate that the addition of rhBMP-2 to the operative site after creation of a full-thickness defect results in an improvement in the histological appearance and composition of the extracellular matrix at one year postoperatively. If these experimental results translate directly to the clinical situation, it is possible that the addition of rhBMP-2 to existing operative treatments for the repair of cartilage may improve the repair process and may help to maintain the integrity of the repair tissue.

[1]  Peter Müller,et al.  Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture , 1977, Nature.

[2]  M J Glimcher,et al.  Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. , 1993, The Journal of bone and joint surgery. American volume.

[3]  M. Glimcher,et al.  Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. , 1980, The Journal of bone and joint surgery. American volume.

[4]  D. Amiel,et al.  Morphologic and biochemical study of sternal cartilage autografts for resurfacing induced osteochondral defects in horses. , 1992, American journal of veterinary research.

[5]  H. J. Mankin,et al.  Instructional Course Lectures, The American Academy of Orthopaedic Surgeons - Articular Cartilage. Part II: Degeneration and Osteoarthrosis, Repair, Regeneration, and Transplantation*† , 1997 .

[6]  R. Hewick,et al.  Recombinant human bone morphogenetic protein‐2 maintains the articular chondrocyte phenotype in long‐term culture , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[7]  E. Thonar,et al.  Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. , 1994, Journal of cell science.

[8]  E. Morris,et al.  The Effect of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) on the Healing of Full-Thickness Defects of Articular Cartilage* , 1997, The Journal of bone and joint surgery. American volume.

[9]  R. Coutts,et al.  The chondrogenesis of rib perichondrial grafts for repair of full thickness articular cartilage defects in a rabbit model: a one year postoperative assessment. , 1988, Connective tissue research.

[10]  H. Ben‐Hur,et al.  Estrogen, Progesterone and Testosterone Receptors in Human Fetal Cartilaginous Tissue: Immunohistochemical Studies , 1997, Calcified Tissue International.