A bidirected generalization of network matrices

We define binet matrices, which furnish a direct generalization of totally unimodular network matrices and arise from the node-edge incidence matrices of bidirected graphs in the same way as network matrices do from directed graphs. We develop the necessary theory, give binet representations for interesting sets of matrices, characterize totally unimodular binet matrices and discuss the recognition problem. We also prove that binet constraint matrices guarantee half-integral optimal solutions to linear programs. © 2006 Wiley Periodicals, Inc. NETWORKS, Vol. 47(4), 185–198 2006

[1]  Leonidas S. Pitsoulis,et al.  Optimization with binet matrices , 2007, Oper. Res. Lett..

[2]  Thomas Zaslavsky,et al.  Biased graphs whose matroids are special binary matroids , 1990, Graphs Comb..

[3]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[4]  Katta G. Murty,et al.  Network programming , 1992 .

[5]  B. Kotnyek A generalization of totally unimodular and network matrices , 2002 .

[6]  Jon Lee,et al.  The incidence structure of subspaces with well-scaled frames , 1990, J. Comb. Theory, Ser. B.

[7]  G. Cornuéjols,et al.  Combinatorial optimization : packing and covering , 2001 .

[8]  Jon Lee,et al.  Subspaces with well-scaled frames , 1989 .

[9]  Donald K. Wagner Equivalent factor matroids of graphs , 1988, Comb..

[10]  Dorit S. Hochbaum,et al.  Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations , 2002, Eur. J. Oper. Res..

[11]  Gautam M. Appa k-Integrality, an extension of total unimodularity , 1993, Oper. Res. Lett..

[12]  Joseph Naor,et al.  Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality , 1993, Math. Program..

[13]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[14]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[15]  Thomas Zaslavsky Orientation of Signed Graphs , 1991, Eur. J. Comb..

[16]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[17]  Balázs Kotnyek,et al.  Rational and integral k-regular matrices , 2004, Discret. Math..

[18]  Thomas Zaslavsky,et al.  Biased graphs. II. The three matroids , 1991, J. Comb. Theory, Ser. B.

[19]  Thomas Zaslavsky,et al.  Biased graphs. I. Bias, balance, and gains , 1989, J. Comb. Theory, Ser. B.

[20]  Jack Edmonds,et al.  Matching: A Well-Solved Class of Integer Linear Programs , 2001, Combinatorial Optimization.

[21]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[22]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[23]  Collette R. Coullard,et al.  Uncovering Generalized-Network Structure in Matrices , 1993, Discret. Appl. Math..

[24]  Bert Gerards,et al.  Matrices with the edmonds—Johnson property , 1986, Comb..

[25]  Thomas Zaslavsky Glossary of signed and gain graphs and allied areas. , 1998 .