Feedback invariance of SISO infinite-dimensional systems

We consider a linear single-input single-output system on a Hilbert space X, with infinitesimal generator A, bounded control element b, and bounded observation element c. We address the problem of finding the largest feedback invariant subspace of X that is in the space c⊥ perpendicular to c. If b is not in c⊥, we show this subspace is c⊥. If b is in c⊥, a number of situations may occur, depending on the relationship between b and c.

[1]  Heiko J. Zwart On the solution of DDP in infinite-dimensional systems , 1990 .

[2]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[3]  Hans Zwart,et al.  Geometric Theory for Infinite Dimensional Systems , 1989 .

[4]  Naohisa Otsuka,et al.  Generalized invariant subspaces for infinite-dimensional systems , 2000 .

[5]  C. Byrnes,et al.  Zero dynamics for relative degree one SISO distributed parameter systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[6]  Stuart Townley,et al.  Robustness and continuity of the spectrum for uncertain distributed parameter systems , 1995, Autom..

[7]  Frank Neubrander,et al.  INTEGRATED SEMIGROUPS AND THEIR APPLICATIONS TO THE ABSTRACT CAUCHY PROBLEM , 1988 .

[8]  Irena Lasiecka,et al.  Finite rank, relatively bounded perturbations of semigroups generators , 1986 .

[9]  A. Isidori Nonlinear Control Systems , 1985 .

[10]  Tosio Kato Perturbation theory for linear operators , 1966 .

[11]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[12]  Hans Zwart Equivalence between open-loop and closed-loop invariance for infinite-dimensional systems: a frequency domain approach , 1988 .

[13]  L. Pandolfi Disturbance decoupling and invariant subspaces for delay systems , 1986 .

[14]  Dietmar A. Salamon,et al.  On control and observation of neutral systems , 1982 .

[15]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[16]  Ruth F. Curtain DISTURBANCE DECOUPLING BY MEASUREMENT FEEDBACK WITH STABILITY FOR INFINITE-DIMENSIONAL SYSTEMS , 1986 .

[17]  Naohisa Otsuka,et al.  Decoupling by State Feedback in Infinite-Dimensional Systems , 1990 .

[18]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[19]  R. Curtain Invariance concepts in infinite dimensions , 1986 .

[20]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[21]  George Weiss,et al.  Transfer Functions of Regular Linear Systems. Part I: Characterizations of Regularity , 1994 .

[22]  Kirsten Morris,et al.  Introduction to Feedback Control , 2001 .

[23]  M. A. Kaashoek,et al.  Signal processing, scattering and operator theory, and numerical methods , 1990 .