Weighted Poincaré inequalities

Poincare-type inequalities are a key tool in the analysis of partial differential equations. They play a particularly central role in the analysis of domain decomposition and multilevel iterative methods for second-order elliptic problems. When the diffusion coefficient varies within a subdomain or within a coarse grid element, then condition number bounds for these methods based on standard Poincare inequalities may be overly pessimistic. In this paper, we present new results on weighted Poincare-type inequalities for very general classes of coefficients that lead to sharper bounds independent of any possible large variation in the coefficients. The main requirement on the coefficients is some form of quasi-monotonicity that we will carefully describe and analyse. The Poincare constants depend on the topology and the geometry of regions of relatively high and/or low coefficient values, and we shall study these dependencies in detail. Applications of the inequalities in the analysis of domain decomposition and multigrid methods can be found in Pechstein & Scheichl (2011, Numer. Math., 118) and Scheichl et al. (2012, SIAM J. Numer. Anal., 50).

[1]  W. Zulehner,et al.  A Newton Based Fluid–Structure Interaction Solver with Algebraic Multigrid Methods on Hybrid Meshes , 2011 .

[2]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[3]  Ludmil T. Zikatanov,et al.  Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids , 2012, SIAM J. Numer. Anal..

[4]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[5]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs , 2008, Numerische Mathematik.

[6]  Robert Scheichl,et al.  Scaling up through domain decomposition , 2009 .

[7]  Yunrong Zhu,et al.  Domain decomposition preconditioners for elliptic equations with jump coefficients , 2008, Numer. Linear Algebra Appl..

[8]  Jinchao Xu,et al.  Domain decomposition methods in science and engineering XIX , 2011 .

[9]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[10]  Michael Griebel,et al.  Robust norm equivalencies for diffusion problems , 2007, Math. Comput..

[11]  Eero Vainikko,et al.  Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients , 2007, Computing.

[12]  Peter Oswald On the robustness of the BPX-preconditioner with respect to jumps in the coefficients , 1999, Math. Comput..

[13]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs. Part II: interface variation , 2011, Numerische Mathematik.

[14]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[15]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[16]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[17]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[18]  M. Sarkis Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements , 1997 .

[19]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[20]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[21]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[22]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[23]  T. Iwaniec,et al.  Hardy-Littlewood inequality for quasiregular mappings in certain domains in R^n , 1985 .

[24]  B. Muckenhoupt,et al.  Weighted norm inequalities for the Hardy maximal function , 1972 .

[25]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[26]  Andreas Veeser,et al.  Explicit Upper Bounds for Dual Norms of Residuals , 2009, SIAM J. Numer. Anal..

[27]  Gundolf Haase,et al.  Adaptive Domain Decomposition Methods for Finite and Boundary Element Equations , 1997 .

[28]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[29]  Robert Scheichl,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré Inequalities and Applications in Domain Decomposition , 2009 .

[30]  Richard L. Wheeden,et al.  Estimates of Best Constants for Weighted Poincaré Inequalities on Convex Domains , 2006 .

[31]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[32]  Jinchao Xu,et al.  UNIFORM CONVERGENT MULTIGRID METHODS FOR ELLIPTIC PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS , 2008 .

[33]  Olof B. Widlund,et al.  An Analysis of a FETI-DP Algorithm on Irregular Subdomains in the Plane , 2008, SIAM J. Numer. Anal..

[34]  Olof B. Widlund,et al.  Domain Decomposition for Less Regular Subdomains: Overlapping Schwarz in Two Dimensions , 2008, SIAM J. Numer. Anal..

[35]  O. Widlund,et al.  FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .

[36]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[37]  S. Chua Weighted Sobolev inequalities on domains satisfying the chain condition , 1993 .

[38]  Y. Efendiev,et al.  A Domain Decomposition Preconditioner for Multiscale High-Contrast Problems , 2011 .