Axiomatic Design of a Micromanipulator using Displacement Amplifier

Micromanipulator is a device that manipulates an object with high precision. Generally, a parallel-type robot has inherently higher precision than a serial-type robot. In most cases, the use of flexure hinge mechanisms is the most appropriate approach to micromanipulators. The micromanipulator is basically required that have high natural frequency and sufficient workspace. However, previous designs are hard to satisfy the required workspace and natural frequency, simultaneously, because the previous micromanipulators are coupled designs. Therefore, this paper suggests a new design parameter as displacement amplifier and new design procedure based on semi-coupled design in axiomatic design. As a consequence the spatial 3-DOF micromanipulator which is chosen as an exemplary device has natural frequency of 500Hz and workspace of . To investigate the effectiveness of the displacement amplifier, simulation and experiment are performed.

[1]  P. Gao,et al.  A new piezodriven precision micropositioning stage utilizing flexure hinges , 1999 .

[2]  Il Hong Suh,et al.  Design and experiment of a 3 DOF parallel micro-mechanism utilizing flexure hinges , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).