Internal models and recursive estimation for 2-D isotropic random fields

Efficient recursive smoothing algorithms are developed for isotropic random fields that can be obtained by passing white noise through rational filters. The estimation problem is shown to be equivalent to a countably infinite set of 1-D separable two-point boundary value smoothing problems. The 1-D smoothing problems are solved using a Markovianization approach followed by a standard 1-D smoothing algorithm. The desired field estimate is then obtained as properly weighted sum of the 1-D smoothed estimates. The 1-D two-point boundary value problems are also shown to have the same asymptotic properties and yield a stable spectral factorization of the power spectrum of the isotropic random fields. >

[1]  JOHN w. WOODS,et al.  Kalman filtering in two dimensions , 1977, IEEE Trans. Inf. Theory.

[2]  A. Willsky,et al.  Linear estimation of boundary value stochastic processes-- Part I: The role and construction of complementary models , 1984 .

[3]  S. Attasi Modelling and Recursive Estimation for Double Indexed Sequences , 1976 .

[4]  G. Rodriguez A function space approach to state and model error estimation for elliptic systems , 1983, The 22nd IEEE Conference on Decision and Control.

[5]  B. Anderson,et al.  Linear Optimal Control , 1971 .

[6]  John N. Tsitsiklis,et al.  A fast algorithm for linear estimation of two- dimensional isotropic random fields , 1985, IEEE Trans. Inf. Theory.

[7]  L. Pitt A Markov property for Gaussian processes with a multidimensional parameter , 1971 .

[8]  Arthur J. Krener,et al.  A causal realization theory, part I; linear deterministic systems , 1987 .

[9]  A. Yaglom Some Classes of Random Fields in n-Dimensional Space, Related to Stationary Random Processes , 1957 .

[10]  E. Wolf,et al.  Coherence properties of blackbody radiation. I. Correlation tensors of the classical field , 1964 .

[11]  Alexander G. Ramm,et al.  Theory and Applications of Some New Classes of Integral Equations , 1980 .

[12]  James E. Barger,et al.  Underwater acoustic system analysis , 1985, Proceedings of the IEEE.

[13]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[14]  Eugene Wong,et al.  Recursive causal linear filtering for two-dimensional random fields , 1978, IEEE Trans. Inf. Theory.

[15]  Eugene Wong,et al.  Recursive linear smoothing of two-dimensional random fields , 1981, IEEE Trans. Inf. Theory.

[16]  A. K. Cline,et al.  The Direct Estimation of Spatial Wavenumber Spectra of Atmospheric Variables , 1974 .

[17]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[18]  Thomas Kailath,et al.  A further note on backwards Markovian models (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[19]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[20]  Anil K. Jain,et al.  Image Restoration, Modelling, and Reduction of Dimensionality , 1974, IEEE Transactions on Computers.

[21]  D. C. Fraser,et al.  A new technique for the optimal smoothing of data , 1968 .

[22]  Alan Willsky,et al.  Linear estimation of boundary value processes , 1983, The 22nd IEEE Conference on Decision and Control.

[23]  A. Balakrishnan,et al.  Spectral theory of random fields , 1983 .

[24]  A. Habibi Two-dimensional Bayesian estimate of images , 1972 .

[25]  David Q. Mayne,et al.  A solution of the smoothing problem for linear dynamic systems , 1966, Autom..

[26]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[27]  H. P. Robertson The invariant theory of isotropic turbulence , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Kiyosi Itô Isotropic Random Current , 1956 .