Plant identity and density can influence arbuscular mycorrhizal fungi colonization, plant growth, and reproduction investment in coculture

Reciprocal effects between arbuscular mycorrhizal fungi (AMF) and plant communities are essential to study the complexity of interactions in a grassland ecosystem. Here, we investigated the effects of plant community density and composition on AMF colonization, plant growth, and reproduction investment. We developed an experimental system with three compartments, each containing either three or six Medicago truncatula Gaertn. plants, or three M. truncatula plants associated with three Silene vulgaris (Moench) Garcke plants. All three compartments shared the same common mycorrhizal network built either by Rhizophagus irregularis MUCL 43194, by Rhizophagus clarus MUCL 46238, or by both AMF in association grown in a central compartment on Plantago lanceolata L. Our results demonstrate an absence of effect of plant density but a positive influence of mixed cultures on AMF root colonization compared with monocultures. This higher AMF development resulted in a positive feedback on shoot biomass and number of fl...

[1]  P. Olsson,et al.  The fungal perspective of arbuscular mycorrhizal colonization in 'nonmycorrhizal' plants. , 2015, The New phytologist.

[2]  S. L. Stürmer,et al.  On farm production of arbuscular mycorrhizal fungi inoculum using lignocellulosic agrowastes , 2014, Mycorrhiza.

[3]  T. Boller,et al.  Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade1[W][OA] , 2012, Plant Physiology.

[4]  S. Declerck,et al.  Association of highly and weakly mycorrhizal seedlings can promote the extra- and intraradical development of a common mycorrhizal network. , 2012, FEMS microbiology ecology.

[5]  E. Kiers,et al.  Life Histories of Symbiotic Rhizobia and Mycorrhizal Fungi , 2011, Current Biology.

[6]  Fusuo Zhang,et al.  P for Two, Sharing a Scarce Resource: Soil Phosphorus Acquisition in the Rhizosphere of Intercropped Species1 , 2011, Plant Physiology.

[7]  T. Roose,et al.  Traits related to differences in function among three arbuscular mycorrhizal fungi , 2011, Plant and Soil.

[8]  J. Bever,et al.  Rooting theories of plant community ecology in microbial interactions. , 2010, Trends in ecology & evolution.

[9]  K. Ineichen,et al.  Evolutionary dynamics of introns and homing endonuclease ORFs in a region of the large subunit of the mitochondrial rRNA in Glomus species (arbuscular mycorrhizal fungi, Glomeromycota). , 2010, Molecular phylogenetics and evolution.

[10]  N. Schtickzelle,et al.  Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation? , 2010, FEMS microbiology ecology.

[11]  M. V. D. van der Heijden,et al.  Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology. , 2010, The New phytologist.

[12]  N. Hausmann,et al.  Plant neighborhood control of arbuscular mycorrhizal community composition. , 2009, The New phytologist.

[13]  A. Dvořáčková,et al.  Development and activity of Glomus intraradices as affected by co-existence with Glomus claroideum in one root system , 2009, Mycorrhiza.

[14]  Manuela Giovannetti,et al.  Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. , 2009, The New phytologist.

[15]  I. Jakobsen,et al.  Underground resource allocation between individual networks of mycorrhizal fungi. , 2008, The New phytologist.

[16]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[17]  J. Jansa,et al.  Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? , 2008, The New phytologist.

[18]  K. Ineichen,et al.  The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment , 2007, Mycorrhiza.

[19]  M. V. D. van der Heijden,et al.  Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species , 2007 .

[20]  S. Declerck,et al.  Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. , 2006, The New phytologist.

[21]  O. Yarden,et al.  Analysis of Quantitative Interactions between Two Species of Arbuscular Mycorrhizal Fungi, Glomus mosseae and G. intraradices, by Real-Time PCR , 2006, Applied and Environmental Microbiology.

[22]  D. Croll,et al.  Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. , 2006, Ecology letters.

[23]  M. Goss,et al.  Effect of two AMF life strategies on the tripartite symbiosis with Bradyrhizobium japonicum and soybean , 2006, Mycorrhiza.

[24]  S. Declerck,et al.  Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. , 2004, The New phytologist.

[25]  D. Janos,et al.  Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density , 2005, Mycorrhiza.

[26]  M. Vestberg,et al.  High functional diversity within species of arbuscular mycorrhizal fungi. , 2004, The New phytologist.

[27]  Damian P. Donnelly,et al.  Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning , 2004 .

[28]  I. Jakobsen,et al.  Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake , 2004 .

[29]  R. Koide,et al.  Effects of mycorrhizal fungi on plant populations , 2002, Plant and Soil.

[30]  H. Vierheilig Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. , 2004, Journal of plant physiology.

[31]  A. Fitter,et al.  Co‐existing grass species have distinctive arbuscular mycorrhizal communities , 2003, Molecular ecology.

[32]  M. Hart,et al.  Plant coexistence mediated by arbuscular mycorrhizal fungi , 2003 .

[33]  Lauren D. Quinn,et al.  Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species , 2002 .

[34]  M. V. D. Heijden Arbuscular Mycorrhizal Fungi as a Determinant of Plant Diversity: in Search of Underlying Mechanisms and General Principles , 2002 .

[35]  S. Fontenla,et al.  Negative influence of non-host plants on the colonization of Pisum sativum by the arbuscular mycorrhizal fungus, Glomus mosseae. , 1999 .

[36]  M. Mclaughlin,et al.  Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv. Mt. Barker , 1999 .

[37]  Ian R. Sanders,et al.  Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity , 1998, Nature.

[38]  J. Graham,et al.  Functioning of mycorrhizal associations along the mutualism–parasitism continuum* , 1997 .

[39]  H. West Influence of arbuscular mycorrhizal infection on competition between holcus lanatus and dactylis glomerata. , 1996 .

[40]  Sabine Ravnskov,et al.  Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant , 1995 .

[41]  E. Newman,et al.  Plant species that can be linked by VA mycorrhizal fungi , 1994 .

[42]  G. Fairchild,et al.  A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. , 1990, The New phytologist.

[43]  M. Tester,et al.  The phenomenon of "nonmycorrhizal" plants , 1987 .

[44]  J. M. Phillips,et al.  Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. , 1970 .