A toy model for testing finite element methods to simulate extreme-mass-ratio binary systems

Extreme-mass-ratio binary systems, binaries involving stellar mass objects orbiting massive black holes, are considered to be a primary source of gravitational radiation to be detected by the space-based interferometer LISA. The numerical modelling of these binary systems is extremely challenging because the scales involved expand over several orders of magnitude. One needs to handle large wavelength scales comparable to the size of the massive black hole and, at the same time, to resolve the scales in the vicinity of the small companion where radiation reaction effects play a crucial role. Adaptive finite element methods, in which quantitative control of errors is achieved automatically by finite element mesh adaptivity based on a posteriori error estimation, are a natural choice that has great potential for achieving the high level of adaptivity required in these simulations. To demonstrate this, we present the results of simulations of a toy model, consisting of a point-like source orbiting a black hole under the action of a scalar gravitational field.

[1]  H. Nakano,et al.  Adiabatic Radiation Reaction to Orbits in Kerr Spacetime , 2005, gr-qc/0506092.

[2]  Y. Mino From the self-force problem to the radiation reaction formula , 2005, gr-qc/0506002.

[3]  Y. Mino Extreme mass ratio binary: radiation reaction and gravitational waveform , 2005, gr-qc/0506008.

[4]  S. Hughes,et al.  Computing inspirals in Kerr in the adiabatic regime: I. The scalar case , 2005, gr-qc/0505075.

[5]  S. Hughes,et al.  Gravitational radiation reaction and inspiral waveforms in the adiabatic limit. , 2005, Physical review letters.

[6]  Y. Mino Self-Force in the Radiation Reaction Formula: — Adiabatic Approximation of a Metric Perturbation and an Orbit — , 2005, gr-qc/0506003.

[7]  S. Detweiler Perspective on gravitational self-force analyses , 2005, gr-qc/0501004.

[8]  M. Rivara,et al.  Cost analysis of the longest-side (triangle bisection) refinement algorithm for triangulations , 2005, Engineering with Computers.

[9]  Stephen R. Lau,et al.  Rapid evaluation of radiation boundary kernels for time-domain wave propagation on black holes: implementation and numerical tests , 2004 .

[10]  E. Poisson TOPICAL REVIEW: Radiation reaction of point particles in curved spacetime , 2004 .

[11]  Numerical computation of constant mean curvature surfaces using finite elements , 2004, gr-qc/0408059.

[12]  Eric Poisson,et al.  The Motion of Point Particles in Curved Spacetime , 2004, Living reviews in relativity.

[13]  S. Lau Rapid evaluation of radiation boundary kernels for time-domain wave propagation on blackholes: theory and numerical methods , 2004, gr-qc/0401001.

[14]  K. Martel Gravitational waveforms from a point particle orbiting a Schwarzschild black hole , 2003, gr-qc/0311017.

[15]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[16]  D. Shoemaker,et al.  Impact of densitized lapse slicings on evolutions of a wobbling black hole , 2003, gr-qc/0307015.

[17]  Peter A. R. Ade,et al.  American Astronomical Society Meeting , 2004 .

[18]  Karsten Danzmann,et al.  LISA - An ESA Cornerstone Mission for the Detection and Observation of Gravitational Waves , 2003 .

[19]  Karsten Danzmann,et al.  LISA technology - concept, status, prospects , 2003 .

[20]  J. Pullin,et al.  Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation , 2003, gr-qc/0303054.

[21]  Y. Mino Perturbative approach to an orbital evolution around a supermassive black hole , 2003, gr-qc/0302075.

[22]  Moving black holes via singularity excision , 2003, gr-qc/0301111.

[23]  S. Husa,et al.  A numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole , 2003, gr-qc/0301060.

[24]  L. Greengard,et al.  Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation , 2002 .

[25]  R. Schilling,et al.  LISA and its in-flight test precursor SMART-2 , 2002 .

[26]  Geoffrey A. Dorn Computing and visualization , 2002 .

[27]  S. Hughes,et al.  Approximating the inspiral of test bodies into Kerr black holes , 2002, gr-qc/0205033.

[28]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[29]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[30]  H. Nakano,et al.  Calculating the gravitational self-force in Schwarzschild spacetime. , 2001, Physical review letters.

[31]  E. Poisson,et al.  A One-Parameter Family of Time-Symmetric Initial Data for the Radial Infall of a Particle into a Schwarzschild Black Hole , 2001, gr-qc/0107104.

[32]  Gravitational self force by mode sum regularization , 2001, gr-qc/0105040.

[33]  Erratum: Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission [Phys. Rev. D 61, 084004 (2000)] , 2001 .

[34]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[35]  S. Hughes Challenges in Mapping the Spacetime of Massive Compact Objects , 2000, gr-qc/0008058.

[36]  Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories , 2000, gr-qc/0005042.

[37]  S. Hughes Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms , 2000, gr-qc/0104041.

[38]  Leslie Greengard,et al.  Rapid Evaluation of Nonreflecting Boundary Kernels for Time-Domain Wave Propagation , 2000, SIAM J. Numer. Anal..

[39]  Loustó Pragmatic approach to gravitational radiation reaction in binary black holes , 1999, Physical review letters.

[40]  A. Ori,et al.  Mode sum regularization approach for the self-force in black hole spacetime , 1999, gr-qc/9912010.

[41]  V. Dolejší Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes , 1998 .

[42]  Desmond J. Higham,et al.  Numerical Analysis 1997 , 1997 .

[43]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .

[44]  R. Price,et al.  Understanding initial data for black hole collisions , 1997, gr-qc/9705071.

[45]  P. Laguna,et al.  Dynamics of perturbations of rotating black holes , 1997, gr-qc/9702048.

[46]  R. Wald,et al.  Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime , 1996, gr-qc/9610053.

[47]  Takahiro Tanaka,et al.  Gravitational radiation reaction to a particle motion , 1996, gr-qc/9606018.

[48]  Michael T. Heath,et al.  Scientific Computing , 2018 .

[49]  María Cecilia Rivara,et al.  The 4-triangles longest-side partition of triangles and linear refinement algorithms , 1996, Math. Comput..

[50]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[51]  D. Kennefick,et al.  Gravitational radiation reaction for bound motion around a Schwarzschild black hole. , 1994, Physical review. D, Particles and fields.

[52]  Shapiro,et al.  Scalar gravitation: A laboratory for numerical relativity. II. Disks. , 1994, Physical review. D, Particles and fields.

[53]  Shapiro,et al.  Scalar gravitation: A laboratory for numerical relativity. III. Axisymmetry. , 1994, Physical review. D, Particles and fields.

[54]  Takahiro Tanaka,et al.  Gravitational Wave Induced by a Particle Orbiting around a Schwarzschild Black Hole , 1993 .

[55]  Shapiro,et al.  Scalar gravitation: A laboratory for numerical relativity. , 1993, Physical Review D, Particles and fields.

[56]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[57]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[58]  B. M. Fulk MATH , 1992 .

[59]  Ralf Kornhuber,et al.  On adaptive grid refinement in the presence of internal or boundary layers , 1990, IMPACT Comput. Sci. Eng..

[60]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[61]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[62]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[63]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[64]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[65]  H. Saunders Book Reviews : The Finite Element Method (Revised): O.C. Zienkiewicz McGraw-Hill Book Co., New York, New York , 1980 .

[66]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[67]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .