A toy model for testing finite element methods to simulate extreme-mass-ratio binary systems
暂无分享,去创建一个
[1] H. Nakano,et al. Adiabatic Radiation Reaction to Orbits in Kerr Spacetime , 2005, gr-qc/0506092.
[2] Y. Mino. From the self-force problem to the radiation reaction formula , 2005, gr-qc/0506002.
[3] Y. Mino. Extreme mass ratio binary: radiation reaction and gravitational waveform , 2005, gr-qc/0506008.
[4] S. Hughes,et al. Computing inspirals in Kerr in the adiabatic regime: I. The scalar case , 2005, gr-qc/0505075.
[5] S. Hughes,et al. Gravitational radiation reaction and inspiral waveforms in the adiabatic limit. , 2005, Physical review letters.
[6] Y. Mino. Self-Force in the Radiation Reaction Formula: — Adiabatic Approximation of a Metric Perturbation and an Orbit — , 2005, gr-qc/0506003.
[7] S. Detweiler. Perspective on gravitational self-force analyses , 2005, gr-qc/0501004.
[8] M. Rivara,et al. Cost analysis of the longest-side (triangle bisection) refinement algorithm for triangulations , 2005, Engineering with Computers.
[9] Stephen R. Lau,et al. Rapid evaluation of radiation boundary kernels for time-domain wave propagation on black holes: implementation and numerical tests , 2004 .
[10] E. Poisson. TOPICAL REVIEW: Radiation reaction of point particles in curved spacetime , 2004 .
[11] Numerical computation of constant mean curvature surfaces using finite elements , 2004, gr-qc/0408059.
[12] Eric Poisson,et al. The Motion of Point Particles in Curved Spacetime , 2004, Living reviews in relativity.
[13] S. Lau. Rapid evaluation of radiation boundary kernels for time-domain wave propagation on blackholes: theory and numerical methods , 2004, gr-qc/0401001.
[14] K. Martel. Gravitational waveforms from a point particle orbiting a Schwarzschild black hole , 2003, gr-qc/0311017.
[15] Curt Cutler,et al. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.
[16] D. Shoemaker,et al. Impact of densitized lapse slicings on evolutions of a wobbling black hole , 2003, gr-qc/0307015.
[17] Peter A. R. Ade,et al. American Astronomical Society Meeting , 2004 .
[18] Karsten Danzmann,et al. LISA - An ESA Cornerstone Mission for the Detection and Observation of Gravitational Waves , 2003 .
[19] Karsten Danzmann,et al. LISA technology - concept, status, prospects , 2003 .
[20] J. Pullin,et al. Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation , 2003, gr-qc/0303054.
[21] Y. Mino. Perturbative approach to an orbital evolution around a supermassive black hole , 2003, gr-qc/0302075.
[22] Moving black holes via singularity excision , 2003, gr-qc/0301111.
[23] S. Husa,et al. A numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole , 2003, gr-qc/0301060.
[24] L. Greengard,et al. Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation , 2002 .
[25] R. Schilling,et al. LISA and its in-flight test precursor SMART-2 , 2002 .
[26] Geoffrey A. Dorn. Computing and visualization , 2002 .
[27] S. Hughes,et al. Approximating the inspiral of test bodies into Kerr black holes , 2002, gr-qc/0205033.
[28] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[29] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[30] H. Nakano,et al. Calculating the gravitational self-force in Schwarzschild spacetime. , 2001, Physical review letters.
[31] E. Poisson,et al. A One-Parameter Family of Time-Symmetric Initial Data for the Radial Infall of a Particle into a Schwarzschild Black Hole , 2001, gr-qc/0107104.
[32] Gravitational self force by mode sum regularization , 2001, gr-qc/0105040.
[34] I. Babuska,et al. The finite element method and its reliability , 2001 .
[35] S. Hughes. Challenges in Mapping the Spacetime of Massive Compact Objects , 2000, gr-qc/0008058.
[36] Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories , 2000, gr-qc/0005042.
[37] S. Hughes. Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms , 2000, gr-qc/0104041.
[38] Leslie Greengard,et al. Rapid Evaluation of Nonreflecting Boundary Kernels for Time-Domain Wave Propagation , 2000, SIAM J. Numer. Anal..
[39] Loustó. Pragmatic approach to gravitational radiation reaction in binary black holes , 1999, Physical review letters.
[40] A. Ori,et al. Mode sum regularization approach for the self-force in black hole spacetime , 1999, gr-qc/9912010.
[41] V. Dolejší. Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes , 1998 .
[42] Desmond J. Higham,et al. Numerical Analysis 1997 , 1997 .
[43] R. K. Smith,et al. Mesh Smoothing Using A Posteriori Error Estimates , 1997 .
[44] R. Price,et al. Understanding initial data for black hole collisions , 1997, gr-qc/9705071.
[45] P. Laguna,et al. Dynamics of perturbations of rotating black holes , 1997, gr-qc/9702048.
[46] R. Wald,et al. Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime , 1996, gr-qc/9610053.
[47] Takahiro Tanaka,et al. Gravitational radiation reaction to a particle motion , 1996, gr-qc/9606018.
[48] Michael T. Heath,et al. Scientific Computing , 2018 .
[49] María Cecilia Rivara,et al. The 4-triangles longest-side partition of triangles and linear refinement algorithms , 1996, Math. Comput..
[50] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[51] D. Kennefick,et al. Gravitational radiation reaction for bound motion around a Schwarzschild black hole. , 1994, Physical review. D, Particles and fields.
[52] Shapiro,et al. Scalar gravitation: A laboratory for numerical relativity. II. Disks. , 1994, Physical review. D, Particles and fields.
[53] Shapiro,et al. Scalar gravitation: A laboratory for numerical relativity. III. Axisymmetry. , 1994, Physical review. D, Particles and fields.
[54] Takahiro Tanaka,et al. Gravitational Wave Induced by a Particle Orbiting around a Schwarzschild Black Hole , 1993 .
[55] Shapiro,et al. Scalar gravitation: A laboratory for numerical relativity. , 1993, Physical Review D, Particles and fields.
[56] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[57] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[58] B. M. Fulk. MATH , 1992 .
[59] Ralf Kornhuber,et al. On adaptive grid refinement in the presence of internal or boundary layers , 1990, IMPACT Comput. Sci. Eng..
[60] D. A. Field. Laplacian smoothing and Delaunay triangulations , 1988 .
[61] Mark S. Shephard,et al. Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .
[62] M. Rivara. Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .
[63] M. Gunzburger,et al. Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .
[64] A. Bayliss,et al. Radiation boundary conditions for wave-like equations , 1980 .
[65] H. Saunders. Book Reviews : The Finite Element Method (Revised): O.C. Zienkiewicz McGraw-Hill Book Co., New York, New York , 1980 .
[66] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[67] Saul A. Teukolsky,et al. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .