Asymptotic enumeration of orientations

We find the asymptotic number of 2-orientations of quadrangulations with n inner faces, and of 3- orientations of triangulations with n inner vertices. We also find the asymptotic number of prime 2-orientations (no separating quadrangle) and prime 3-orientations (no separating triangle). The estimates we find are of the form c n^(-\alpha) \gamma^ n, for suitable constants c, \alpha, \gamma, with \alpha = 4 for 2-orientations and \alpha = 5 for 3-orientations. The proofs are based on singularity analysis of D-finite generating functions, using the Fuchsian theory of complex linear differential equations.

[1]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[2]  Nicolas Bonichon,et al.  A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths , 2005, Discret. Math..

[3]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[4]  Stefan Felsner,et al.  On the Number of Planar Orientations with Prescribed Degrees , 2008, Electron. J. Comb..

[5]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[6]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[7]  Rodney Baxter Dichromatic Polynomials and Potts Models Summed Over Rooted Maps , 2000 .

[8]  R. Mullin,et al.  The enumeration of c-nets via quadrangulations , 1968 .

[9]  Nicolas Bonichon,et al.  Intervals in Catalan lattices and realizers of triangulations , 2009, J. Comb. Theory, Ser. A.

[10]  Éric Fusy,et al.  Bijective counting of plane bipolar orientations , 2007, Electron. Notes Discret. Math..

[11]  Stefan Felsner,et al.  Bijections for Baxter families and related objects , 2008, J. Comb. Theory A.

[12]  Patrice Ossona de Mendez,et al.  Bipolar orientations Revisited , 1995, Discret. Appl. Math..

[13]  P. Hartman Ordinary Differential Equations , 1965 .

[14]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[15]  R. Mullin,et al.  On the Enumeration of Tree-Rooted Maps , 1967, Canadian Journal of Mathematics.

[16]  P. Hartman,et al.  ON AN ORDINARY DIFFERENTIAL EQUATION , 2010 .