In situ observation of heat-induced degradation of perovskite solar cells

G.D., S.C., and C.D. acknowledge funding from ERC under grant number 259619 PHOTO EM. C.D. acknowledges financial support from the EU under grant number 312483 ESTEEM2. F.M., L.C. and A.D.C. acknowledge funding from “Polo Solare Organico” Regione Lazio, the “DSSCX” MIURPRIN2010 and FP7 ITN “Destiny”. G.D and S.C. thank Dr. Francisco de la Pena and Dr. Pierre Burdet for assistance with PCA analysis.

[1]  Shenghao Wang,et al.  Temperature-dependent hysteresis effects in perovskite-based solar cells , 2015 .

[2]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[3]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[4]  A. Di Carlo,et al.  Blocking layer optimisation of poly(3-hexylthiopene)based solid state dye sensitized solar cells , 2013 .

[5]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[6]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[7]  Alberto Eljarrat,et al.  hyperspy: HyperSpy 0.8 , 2015 .

[8]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[9]  Qi Chen,et al.  Perovskite solar cells: film formation and properties , 2015 .

[10]  Yang Tang,et al.  Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells* , 2017 .

[11]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[12]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[13]  S. Zakeeruddin,et al.  Melt-infiltration of spiro-OMeTAD and thermal instability of solid-state dye-sensitized solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[14]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[15]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[16]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[17]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[18]  M. Grätzel,et al.  Temperature dependence of transport properties of spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells. , 2013, ACS nano.

[19]  S. Haque,et al.  Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2 , 2015 .

[20]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[21]  Michael D. McGehee,et al.  Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)₂ in perovskite and dye-sensitized solar cells. , 2014, Journal of the American Chemical Society.

[22]  L. Etgar,et al.  Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells , 2015 .

[23]  Paul Munroe,et al.  The application of focused ion beam microscopy in the material sciences , 2009 .

[24]  A. Di Carlo,et al.  Interface and Composition Analysis on Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[25]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[26]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[27]  P. Midgley,et al.  Enhanced quantification for 3D SEM–EDS: Using the full set of available X-ray lines , 2015, Ultramicroscopy.

[28]  N. Park,et al.  15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 , 2015 .

[29]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[30]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[31]  Y. Qi,et al.  Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films , 2015 .