Euclidean and Hermitian Self-Orthogonal Algebraic Geometry Codes and Their Application to Quantum Codes

In the present paper, we show that if the dimension of an arbitrary algebraic geometry code over a finite field of even characteristic is slightly less than n/2-g with n being the length of the code and g being the genus of the base curve, then it is equivalent to an Euclidean self-orthogonal code. Previously, such results required a strong condition on the existence of a certain differential. We also show a similar result on Hermitian self-orthogonal algebraic geometry codes. As a consequence, we can apply our result to quantum codes and obtain some good quantum codes. In particular, we obtain a q-ary quantum [[q+1,1]]-MDS code for an even power q which is essential for quantum secret sharing.

[1]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[2]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[3]  Henning Stichtenoth,et al.  Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.

[4]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[5]  Ryutaroh Matsumoto,et al.  Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[6]  Chaoping Xing,et al.  Coding Theory: A First Course , 2004 .

[7]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[8]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[9]  Zhuo Li,et al.  A Family of Asymptotically Good Quantum Codes Based on Code Concatenation , 2008, IEEE Transactions on Information Theory.

[10]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[11]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[12]  N. J. A. Sloane,et al.  Good self dual codes exist , 1972, Discret. Math..

[13]  Chaoping Xing,et al.  Asymptotic bounds on quantum codes from algebraic geometry codes , 2006, IEEE Transactions on Information Theory.

[14]  S. Litsyn,et al.  Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.

[15]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[16]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[17]  Martin Rötteler,et al.  On quantum MDS codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[18]  Henning Stichtenoth Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .

[19]  Qing Chen,et al.  Graphical Nonbinary Quantum Error-Correcting Codes , 2008 .

[20]  Chaoping Xing,et al.  Coding Theory: Index , 2004 .

[21]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[23]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[25]  Pradeep Kiran Sarvepalli,et al.  Nonbinary quantum Reed-Muller codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[26]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[27]  Harald Niederreiter,et al.  A New Construction of Algebraic Geometry Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[28]  Hao Chen,et al.  Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound , 2001, IEEE Trans. Inf. Theory.

[29]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[30]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[31]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[32]  Chaoping Xing,et al.  Excellent nonlinear codes from algebraic function fields , 2005, IEEE Transactions on Information Theory.

[33]  S. Litsyn,et al.  Upper bounds on the size of quantum codes , 1997, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[34]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .