Sigmoid based PID controller implementation for rotor control

This paper presents a sigmoid based variable coefficient PID (SBVC-PID) controller design for Twin Rotor MIMO System (TRMS). The proposed SBVC-PID controller dynamically changes controller coefficients according to a modified sigmoid function of the error signal. The modified sigmoid function is used to limit variability of PID controller coefficients in a predefined range. In the proposed method, each parameters of PID, namely pk, kt and kd, alter between predefined upper and lower bounds. A modified sigmoid function adjusted by a transition coefficient is used to alter each of the PID parameters between these bound limits. The variable coefficients of SBVC-PID maintain a hypercube in kp, kt and kd parameter space satisfying robust stability of the system. Well-known Kharitonov polynomials are used to ensure that the SBVC-PID coefficient alteration takes place in the robust stability intervals. Due to dynamically change of PID coefficients depending on magnitude of error signal, the control performance can be improved compared to conventional PID control. Performance of SBVC-PID controller is demonstrated via theoretical examples and TRMS rotor control simulations.

[1]  Charles E. Hall,et al.  Authors' reply to comments on "variable-structure PID control to prevent integrator windup" , 2001, IEEE Transactions on Industrial Electronics.

[2]  Chin-Wang Tao,et al.  Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system , 2010, Fuzzy Sets Syst..

[3]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[4]  B. Anderson,et al.  On robust Hurwitz polynomials , 1987 .

[5]  Dervis Karaboga,et al.  Proportional—Integral—Derivative Controller Design by Using Artificial Bee Colony, Harmony Search, and the Bees Algorithms , 2010 .

[6]  Xing-Gang Yan Discussion on: “Adaptive Variable Structure Maneuvering Control and Vibration Reduction of Three-axis Stabilized Flexible Spacecraft” , 2006 .

[7]  Guangfu Ma,et al.  Adaptive Variable Structure Maneuvering Control and Vibration Reduction of Three-axis Stabilized Flexible Spacecraft , 2006, Eur. J. Control.

[8]  Igor Boiko Variable-structure PID controller for level process , 2013 .

[9]  N. Minorsky.,et al.  DIRECTIONAL STABILITY OF AUTOMATICALLY STEERED BODIES , 2009 .

[10]  Yik-Chung Wu,et al.  Integral variable structure control approach for robot manipulators , 1992 .

[11]  A. Callender,et al.  Time-Lag in a Control System , 1936 .

[12]  Yorgo Istefanopulos,et al.  A new variable structure PID-controller design for robot manipulators , 2005, IEEE Transactions on Control Systems Technology.

[13]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[14]  Aitor J. Garrido,et al.  An Adaptive Variable Structure Control Law for Sensorless Induction Motors , 2007, Eur. J. Control.

[15]  Jih-Gau Juang,et al.  Comparison of classical control and intelligent control for a MIMO system , 2008, Appl. Math. Comput..

[16]  Shubhi Purwar,et al.  A Nonlinear State Observer Design for 2-DOF Twin Rotor System Using Neural Networks , 2009, 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies.

[17]  C. Hang,et al.  Refinements of the Ziegler-Nichols tuning formula , 1991 .

[18]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1994 .

[19]  Celaleddin Yeroglu,et al.  Computation of Stabilizing PI and PID Controllers using the Stability Boundary Locus , 2006 .

[20]  Andries P. Engelbrecht Computational Intelligence , 2002, Lecture Notes in Computer Science.

[21]  Jacob S. Glower,et al.  Designing fuzzy controllers from a variable structures standpoint , 1997, IEEE Trans. Fuzzy Syst..

[22]  Andrew J. Chipperfield,et al.  Dynamic modeling and optimal control of a twin rotor MIMO system , 2000, Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093).

[23]  D. Karaboga,et al.  Tuning PID controller parameters using tabu search algorithm , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[24]  Murat Akcin,et al.  A photovoltaic system model for Matlab/Simulink simulations , 2013, 4th International Conference on Power Engineering, Energy and Electrical Drives.

[25]  Mao-Lin Chen,et al.  Mathematical model set‐point stabilizing controller design of a twin rotor MIMO system , 2008 .

[26]  Baris Baykant Alagöz,et al.  Power regulated DC/DC driver design by hierarchical control , 2016 .

[27]  Masayoshi Tomizuka,et al.  Fuzzy gain scheduling of PID controllers , 1993, IEEE Trans. Syst. Man Cybern..

[28]  Abdullah Ates,et al.  A stochastic multi-parameters divergence method for online auto-tuning of fractional order PID controllers , 2014, J. Frankl. Inst..

[29]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[30]  Elbrous M. Jafarov,et al.  A new variable structure PID-controller for robot manipulators with parameter perturbations: An augm , 2002 .

[31]  Jih-Gau Juang,et al.  Intelligent control scheme for twin rotor MIMO system , 2005, IEEE International Conference on Mechatronics, 2005. ICM '05..

[32]  Abdullah Ates,et al.  Auto-tuning of PID controller according to fractional-order reference model approximation for DC rotor control , 2013 .

[33]  Stefano Di Gennaro,et al.  Discussion on: "Adaptive Variable Structure Maneuvering Control and Vibration Reduction of Three-axis Stabilized Flexible Spacecraft" , 2006, Eur. J. Control.

[34]  M. de Mathelin,et al.  Robust control of robot manipulators: A survey , 1999 .