Two-Dimensional DOA Estimation for Uniform Rectangular Array Using Reduced-Dimension Propagator Method

A novel algorithm is proposed for two-dimensional direction of arrival (2D-DOA) estimation with uniform rectangular array using reduced-dimension propagator method (RD-PM). The proposed algorithm requires no eigenvalue decomposition of the covariance matrix of the receive data and simplifies two-dimensional global searching in two-dimensional PM (2D-PM) to one-dimensional local searching. The complexity of the proposed algorithm is much lower than that of 2D-PM. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm and conventional PM algorithms, also very close to 2D-PM. The angle estimation error and Cramer-Rao bound (CRB) are derived in this paper. Furthermore, the proposed algorithm can achieve automatically paired 2D-DOA estimation. The simulation results verify the effectiveness of the algorithm.

[1]  E. F. Deprettere,et al.  A two-dimensional version of the matrix pencil method to solve the DOA problem , 1989 .

[2]  W. Chen,et al.  Improved Blind 2D-Direction of Arrival Estimation with L-Shaped Array Using Shift Invariance Property , 2009 .

[3]  Louis L. Scharf,et al.  Two-dimensional modal analysis based on maximum likelihood , 1994, IEEE Trans. Signal Process..

[4]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[5]  Young Su Kim,et al.  Spatially Close Signals Separation via Array Aperture Expansions and Spatial Spectrum Averaging , 2004 .

[7]  R. Rajagopal,et al.  Generalised algorithm for DOA estimation in a passive sonar , 1993 .

[8]  Xiaofei Zhang,et al.  Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method , 2012, Signal Process..

[9]  Hsien-Tsai Wu,et al.  Source number estimator using Gerschgorin disks , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[10]  Nanning Zheng,et al.  Simple and Efficient Nonparametric Method for Estimating the Number of Signals Without Eigendecomposition , 2007, IEEE Transactions on Signal Processing.

[11]  Petre Stoica,et al.  Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[12]  Michael D. Zoltowski,et al.  Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT , 1996, IEEE Trans. Signal Process..

[13]  Messaoud Benidir,et al.  Performances analysis of the propagator method for source bearing estimation , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[14]  J. P. McGeehan,et al.  The performance enhancement of multibeam adaptive base-station antennas for cellular land mobile radio systems , 1990 .

[15]  Jack H. Winters,et al.  Smart antennas for wireless systems , 1998, IEEE Wirel. Commun..

[16]  S. Marcos,et al.  Statistical analysis of the propagator method for DOA estimation without eigendecomposition , 1996, Proceedings of 8th Workshop on Statistical Signal and Array Processing.

[17]  J. D. Río,et al.  The matrix pencil method for two-dimensional direction of arrival estimation employing an L-shaped array , 1997 .

[18]  Messaoud Benidir,et al.  The propagator method for source bearing estimation , 1995, Signal Process..

[19]  Xiaofei Zhang,et al.  Direction of Departure (DOD) and Direction of Arrival (DOA) Estimation in MIMO Radar with Reduced-Dimension MUSIC , 2010, IEEE Communications Letters.

[20]  T. Kailath,et al.  Spatio-temporal spectral analysis by eigenstructure methods , 1984 .

[21]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[22]  Lisheng Yang,et al.  Computationally Efficient 2-D DOA Estimation Using Two Parallel Uniform Linear Arrays , 2009 .

[23]  Guisheng Liao,et al.  A fast algorithm for 2-D direction-of-arrival estimation , 2003, Signal Process..

[24]  Vikas S. Kedia,et al.  A new algorithm for 2-D DOA estimation , 1997, Signal Process..

[25]  Xiaofei Zhang,et al.  Novel two-dimensional DOA estimation with L-shaped array , 2011, EURASIP J. Adv. Signal Process..