Quantum eigenvalue estimation via time series analysis
暂无分享,去创建一个
[1] E. Knill,et al. Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.
[2] Andris Ambainis,et al. Variable time amplitude amplification and quantum algorithms for linear algebra problems , 2012, STACS.
[3] E. Knill,et al. Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.
[4] Griffiths,et al. Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.
[5] M. Suzuki,et al. General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .
[6] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[7] J. Gambetta,et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.
[8] S. Lloyd,et al. An efficient quantum algorithm for spectral estimation , 2016, 1609.08170.
[9] A. Harrow,et al. Quantum algorithm for linear systems of equations. , 2008, Physical review letters.
[10] I. Chuang,et al. Hamiltonian Simulation by Qubitization , 2016, Quantum.
[11] T. Sarkar,et al. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .
[12] Alán Aspuru-Guzik,et al. A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.
[13] R. Cleve,et al. Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.
[14] Matthew B. Hastings,et al. Faster phase estimation , 2013, Quantum Inf. Comput..
[15] Andrew M. Childs,et al. Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.
[16] 46 , 2015, Slow Burn.
[17] Andrew M. Childs,et al. Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.
[18] M. Suzuki,et al. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .
[19] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[20] L. M. Delves,et al. On the Convergence Rate of Generalized Fourier Expansions , 1973 .
[21] R. Somma. A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation , 2015, 1512.03416.
[22] S. Lloyd,et al. Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.
[23] R. Cleve,et al. Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[24] J. Gambetta,et al. Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.
[25] Barbara M. Terhal,et al. Spectral quantum tomography , 2019, npj Quantum Information.
[26] P. Høyer,et al. Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.
[27] Kristan Temme,et al. Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.
[28] Patrick J. Coles,et al. Learning the quantum algorithm for state overlap , 2018, New Journal of Physics.
[29] B. M. Fulk. MATH , 1992 .
[30] I. Chuang,et al. Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.
[31] Andrew M. Childs,et al. Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..
[32] M. Head‐Gordon,et al. Simulated Quantum Computation of Molecular Energies , 2005, Science.
[33] D. Berry,et al. Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.