Quantum eigenvalue estimation via time series analysis

We present an efficient method for estimating the eigenvalues of a Hamiltonian $H$ from the expectation values of the evolution operator for various times. For a given quantum state $\rho$, our method outputs a list of eigenvalue estimates and approximate probabilities. Each probability depends on the support of $\rho$ in those eigenstates associated with eigenvalues within an arbitrarily small range. The complexity of our method is polynomial in the inverse of a given precision parameter. Unlike the well-known quantum phase estimation algorithm that uses the quantum Fourier transform, our method does not require large ancillary systems, large sequences of controlled operations, or preserving coherence between experiments, and is therefore more attractive for near-term applications. The output of our method can be used to compute spectral properties of $H$ and other expectation values efficiently.

[1]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[2]  Andris Ambainis,et al.  Variable time amplitude amplification and quantum algorithms for linear algebra problems , 2012, STACS.

[3]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[4]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[5]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[6]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[7]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[8]  S. Lloyd,et al.  An efficient quantum algorithm for spectral estimation , 2016, 1609.08170.

[9]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[10]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[11]  T. Sarkar,et al.  Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .

[12]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[13]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[14]  Matthew B. Hastings,et al.  Faster phase estimation , 2013, Quantum Inf. Comput..

[15]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[16]  46 , 2015, Slow Burn.

[17]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.

[18]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[19]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[20]  L. M. Delves,et al.  On the Convergence Rate of Generalized Fourier Expansions , 1973 .

[21]  R. Somma A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation , 2015, 1512.03416.

[22]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[23]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[25]  Barbara M. Terhal,et al.  Spectral quantum tomography , 2019, npj Quantum Information.

[26]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[27]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[28]  Patrick J. Coles,et al.  Learning the quantum algorithm for state overlap , 2018, New Journal of Physics.

[29]  B. M. Fulk MATH , 1992 .

[30]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[31]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[32]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[33]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.