A hybrid algorithm for the solution of a single commodity spatial equilibrium model

In this paper we propose a hybrid algorithm for the solution of a large-scale single commodity spatial equilibrium model. This model can be stated as a Linear Complementarity Problem (LCP) with a singular Symmetric Positive Semi-Definite (SPSD) matrix whose structure is closely related to the network structure of the model. The hybrid scheme is a combination of Predictor-Corrector (PC) and Parametric Principal Pivoting (PPP) algorithms and its implementation takes full advantage of the structure of the matrix of the LCP. We report computational experience on the solution of large-scale spatial equilibrium problems with up to 1000 regions that shows the great efficiency of the approach discussed in this paper.

[1]  E. Spedicato Algorithms for continuous optimization : the state of the art , 1994 .

[2]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[3]  Faruk Güder,et al.  Parallel and Serial Successive Overrelaxation for Multicommodity Spatial Price Equilibrium Problems , 1992, Transp. Sci..

[4]  Robert L. Graves,et al.  A Principal Pivoting Simplex Algorithm for Linear and Quadratic Programming , 1967, Oper. Res..

[5]  Panos M. Pardalos,et al.  An interior-point algorithm for large-scale quadratic problems with box constraints , 1990 .

[6]  J. Pang A Hybrid Method for the Solution of Some Multi-Commodity Spatial Equilibrium Problems , 1981 .

[7]  Emilio Spedicato,et al.  Algorithms for Continuous Optimization , 1994 .

[8]  Jong-Shi Pang,et al.  A parametric linear complementarity technique for the computation of equilibrium prices in a single commodity spatial model , 1981, Math. Program..

[9]  B. Curtis Eaves,et al.  Computing Economic Equilibria on Affine Networks with Lemke's Algorithm , 1979, Math. Oper. Res..

[10]  L. N. Vicente,et al.  A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables , 1994 .

[11]  Joaquim Júdice,et al.  An Investigation of Interior-Point Algorithms for the Linear Transportation Problem , 1996, SIAM J. Sci. Comput..

[12]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[13]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[14]  R. Prim Shortest connection networks and some generalizations , 1957 .

[15]  C. Roger Glassey,et al.  A quadratic network optimization model for equilibrium single commodity trade flows , 1978, Math. Program..

[16]  Gene H. Golub,et al.  Matrix computations , 1983 .

[17]  David F. Shanno,et al.  Computational Methods For Linear Programming , 1994 .

[18]  Quey-Jen Yeh,et al.  A reduced dual affine scaling algorithm for solving assignment and transportation problems , 1989 .

[19]  A. George,et al.  Solution of sparse linear least squares problems using givens rotations , 1980 .

[20]  J. Júdice Algorithms for Linear Complementarity Problems , 1994 .

[21]  Panos M. Pardalos,et al.  Interior point algorithms for network flow problems , 1996 .

[22]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[23]  A. Nagurney Network Economics: A Variational Inequality Approach , 1992 .

[24]  John E. Beasley Advances in Linear and Integer Programming , 1996 .

[25]  Joaquim Júdice,et al.  An investigation of interior-point and block pivoting algorithms for large-scale symmetric monotone linear complementarity problems , 1996, Comput. Optim. Appl..

[26]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .