Cascading: an adjusted exchange method for robust conic programming

It is well known that the robust counterpart introduced by Ben-Tal and Nemirovski (Math Oper Res 23:769–805, 1998) increases the numerical complexity of the solution compared to the original problem. Kočvara, Nemirovski and Zowe therefore introduced in Kočvara et al. (Comput Struct 76:431–442, 2000) an approximation algorithm for the special case of robust material optimization, called cascading. As the title already indicates, we will show that their method can be seen as an adjustment of standard exchange methods to semi-infinite conic programming. We will see that the adjustment can be motivated by a suitable reformulation of the robust conic problem.

[1]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[2]  J. A. Gómez,et al.  Cutting plane algorithms for robust conic convex optimization problems , 2006, Optim. Methods Softw..

[3]  Michael Stingl,et al.  PENNON: A code for convex nonlinear and semidefinite programming , 2003, Optim. Methods Softw..

[4]  Rembert Reemtsen,et al.  Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .

[5]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[6]  Melvyn Sim,et al.  Tractable Approximations to Robust Conic Optimization Problems , 2006, Math. Program..

[7]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[8]  Oliver Stein,et al.  The Adaptive Convexification Algorithm: A Feasible Point Method for Semi-Infinite Programming , 2007, SIAM J. Optim..

[9]  M. D. Ašić,et al.  An interior semi-infinite programming method , 1988 .

[10]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[11]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[12]  Stephen P. Boyd,et al.  Connections between Semi-Infinite and Semidefinite Programming , 1998 .

[13]  Michal Kočvara,et al.  Cascading — an approach to robust material optimization , 2000 .

[14]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[15]  Ralf Werner Costs and benefits of robust optimization , 2010 .

[16]  Kees Roos,et al.  Robust Solutions of Uncertain Quadratic and Conic-Quadratic Problems , 2002, SIAM J. Optim..