Functional Nanomaterials on 2D Surfaces and in 3D Nanocomposite Hydrogels for Biomedical Applications

[1]  Shiyu Li,et al.  Effects of RGD nanospacing on chondrogenic differentiation of mesenchymal stem cells. , 2015, Journal of materials chemistry. B.

[2]  E. Danen,et al.  Integrins: Signaling, disease, and therapy , 2007, International journal of radiation biology.

[3]  J. Spatz,et al.  Nanopatterned Adhesive, Stretchable Hydrogel to Control Ligand Spacing and Regulate Cell Spreading and Migration. , 2017, ACS nano.

[4]  I. Willner,et al.  DNA-Based Hydrogels Loaded with Au Nanoparticles or Au Nanorods: Thermoresponsive Plasmonic Matrices for Shape-Memory, Self-Healing, Controlled Release, and Mechanical Applications. , 2019, ACS nano.

[5]  Simone Morais,et al.  Alzheimer's disease: Development of a sensitive label-free electrochemical immunosensor for detection of amyloid beta peptide , 2017 .

[6]  K. Nagahama,et al.  Self-assembling polymer micelle/clay nanodisk/doxorubicin hybrid injectable gels for safe and efficient focal treatment of cancer. , 2015, Biomacromolecules.

[7]  Racliffe W. S. Lai,et al.  Regulation of engineered nanomaterials: current challenges, insights and future directions , 2018, Environmental Science and Pollution Research.

[8]  A. Schäfer,et al.  Cell Growth on ("Janus") Density Gradients of Bifunctional Zeolite L Crystals. , 2016, ACS applied materials & interfaces.

[9]  S. Pakapongpan,et al.  Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. , 2017, Materials science & engineering. C, Materials for biological applications.

[10]  Kathrin Benson,et al.  Cell adhesion behavior on enantiomerically functionalized zeolite L monolayers. , 2012, Angewandte Chemie.

[11]  N. Zagris Extracellular matrix in development of the early embryo. , 2001, Micron.

[12]  U. Schwarz,et al.  Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors. , 2010, Biophysical journal.

[13]  Zhenzhong Zhang,et al.  Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery , 2016, Nanotechnology.

[14]  Jun Lin,et al.  Multiwalled carbon nanotubes and NaYF4:Yb3+/Er3+ nanoparticle-doped bilayer hydrogel for concurrent NIR-triggered drug release and up-conversion luminescence tagging. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[15]  E. Kumacheva,et al.  Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. , 2010, Nature nanotechnology.

[16]  Julie A. Pollock,et al.  Functionalized carbon nanotube adsorption interfaces for electron transfer studies of galactose oxidase. , 2019, Bioelectrochemistry.

[17]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[18]  M. Artemyev,et al.  Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials. , 2013, Nanoscale.

[19]  Ali Khademhosseini,et al.  Dielectrophoretically Aligned Carbon Nanotubes to Control Electrical and Mechanical Properties of Hydrogels to Fabricate Contractile Muscle Myofibers , 2013, Advanced materials.

[20]  Ali Khademhosseini,et al.  Nanocomposite hydrogels for biomedical applications. , 2014, Biotechnology and bioengineering.

[21]  R. Oreffo,et al.  Clay: New Opportunities for Tissue Regeneration and Biomaterial Design , 2013, Advanced materials.

[22]  M. Nair,et al.  Nanocomposite Hydrogels: Advances in Nanofillers Used for Nanomedicine , 2018, Gels.

[23]  X. Xia,et al.  Chain-length dependent interfacial immunoreaction kinetics on self-assembled monolayers revealed by surface-enhanced infrared absorption spectroscopy. , 2018, Talanta.

[24]  N. Jaffrezic‐Renault,et al.  Gold nanoparticles assembly on electrospun poly(vinyl alcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing , 2017 .

[25]  Benjamin Geiger,et al.  Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. , 2008, Nano letters.

[26]  H. Namazi,et al.  Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. , 2017, Carbohydrate polymers.

[27]  A. Khademhosseini,et al.  Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. , 2012, ACS nano.

[28]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[29]  A. Motealleh,et al.  Nanocomposite Hydrogels and Their Applications in Tissue Engineering , 2017, Advanced healthcare materials.

[30]  Hafsa Korri-Youssoufi,et al.  Direct electrochemical DNA biosensor based on reduced graphene oxide and metalloporphyrin nanocomposite , 2017 .

[31]  Sinan K. Muldur,et al.  Modulation of surface bio-functionality by using gold nanostructures on protein repellent surfaces , 2015 .

[32]  D. Mooney,et al.  Injectable nanocomposite cryogels for versatile protein drug delivery. , 2018, Acta biomaterialia.

[33]  Ben L Feringa,et al.  Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. , 2010, Chemical Society reviews.

[34]  A. Gaharwar,et al.  Nanoengineered injectable hydrogels for wound healing application. , 2018, Acta biomaterialia.

[35]  B. Geiger,et al.  The integrin adhesome: from genes and proteins to human disease , 2014, Nature Reviews Molecular Cell Biology.

[36]  Hamidreza Arandiyan,et al.  Lanthanide‐Doped Upconversion Nanoparticles: Emerging Intelligent Light‐Activated Drug Delivery Systems , 2016, Advanced science.

[37]  E. A. Cavalcanti-Adam,et al.  Cellular Chemomechanics at Interfaces: Sensing, Integration and Response{ , 2006 .

[38]  Maurizio Prato,et al.  Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery. , 2015, ACS nano.

[39]  Helmuth Möhwald,et al.  Laser-induced cell detachment, patterning, and regrowth on gold nanoparticle functionalized surfaces. , 2012, ACS nano.

[40]  Julian R. Jones,et al.  Bioactive silica–poly(γ-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds , 2012 .

[41]  B. Rodriguez,et al.  Biocompatible Gold Nanoparticle Arrays Photodeposited on Periodically Proton Exchanged Lithium Niobate. , 2016, ACS biomaterials science & engineering.

[42]  A. Huttenlocher,et al.  Adhesion in cell migration. , 1995, Current opinion in cell biology.

[43]  Fang Wang,et al.  Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles. , 2018, Biosensors & bioelectronics.

[44]  Lina Zhang,et al.  Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels. , 2016, Biomacromolecules.

[45]  Harald Fuchs,et al.  Cell Adhesion and Cellular Patterning on a Self‐Assembled Monolayer of Zeolite L Crystals , 2010 .

[46]  A. Khademhosseini,et al.  Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. , 2013, ACS nano.

[47]  David J Mooney,et al.  Alginate hydrogels as biomaterials. , 2006, Macromolecular bioscience.

[48]  Bongchul Kang,et al.  Rapid localized deactivation of self-assembled monolayers by propagation-controlled laser-induced plasma and its application to self-patterning of electronics and biosensors , 2018 .

[49]  B. Nebe,et al.  Cell-material interaction , 2013 .

[50]  A. Khademhosseini,et al.  Corrigendum to "Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells" [Acta Biomater. 69 (2018) 342-351]. , 2018, Acta Biomaterialia.

[51]  A. Albertsson,et al.  In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery , 2015, Biomacromolecules.

[52]  T. Uede,et al.  The role of α9β1 integrin and its ligands in the development of autoimmune diseases , 2018, Journal of Cell Communication and Signaling.

[53]  R. Fässler,et al.  Sensing the mechano-chemical properties of the extracellular matrix. , 2017, Matrix biology : journal of the International Society for Matrix Biology.

[54]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 , 2001, Science.

[55]  Joachim P Spatz,et al.  Activation of integrin function by nanopatterned adhesive interfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  Benjamin Geiger,et al.  Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. , 2007, Biophysical journal.

[57]  I. Willner,et al.  Functionalized DNA nanostructures. , 2012, Chemical reviews.

[58]  D. Gullberg,et al.  Extracellular matrix and its receptors during development. , 1995, The International journal of developmental biology.

[59]  I. Almeida,et al.  Carbon disulfide mediated self-assembly of Laccase and iron oxide nanoparticles on gold surfaces for biosensing applications. , 2017, Journal of colloid and interface science.

[60]  A. Motealleh,et al.  Janus Nanocomposite Hydrogels for Chirality-Dependent Cell Adhesion and Migration. , 2017, ACS applied materials & interfaces.

[61]  T. Coradin,et al.  Antibiotic-loaded silica nanoparticle-collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention. , 2014, Journal of materials chemistry. B.

[62]  S. Santoro,et al.  Altered Integrin Expression and the Malignant Phenotype: The Contribution of Multiple Integrated Integrin Receptors , 1998, Journal of Mammary Gland Biology and Neoplasia.

[63]  Christopher D Spicer,et al.  Peer-reviewed version of the manuscript published in final form at Chemical Society Reviews (2018) Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications , 2018 .

[64]  H. Fuchs,et al.  Self-assembled monolayers of enantiomerically functionalized periodic mesoporous organosilicas and the effect of surface chirality on cell adhesion behaviour , 2015 .

[65]  Ali Khademhosseini,et al.  Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. , 2016, Journal of materials chemistry. B.

[66]  Akhilesh K. Gaharwar,et al.  Mechanically Stiff Nanocomposite Hydrogels at Ultralow Nanoparticle Content. , 2016, ACS nano.

[67]  B. Nies,et al.  Selective RGD-Mediated Adhesion of Osteoblasts at Surfaces of Implants. , 1999, Angewandte Chemie.

[68]  D. Mayer,et al.  Tuning neuron adhesion and neurite guiding using functionalized AuNPs and backfill chemistry , 2015 .

[69]  K. Riehemann,et al.  Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels , 2016, Advanced healthcare materials.

[70]  Nermin Seda Kehr,et al.  Self-assembled monolayers and nanocomposite hydrogels of functional nanomaterials for tissue engineering applications. , 2015, Macromolecular bioscience.

[71]  J. Spatz,et al.  Depending on Its Nano-Spacing, ALCAM Promotes Cell Attachment and Axon Growth , 2012, PloS one.

[72]  Patrick J. Schexnailder,et al.  Nanocomposite polymer hydrogels , 2009 .

[73]  B. Geiger,et al.  Environmental sensing through focal adhesions , 2009, Nature Reviews Molecular Cell Biology.

[74]  Xiaogang Qu,et al.  3D Graphene Oxide–Polymer Hydrogel: Near‐Infrared Light‐Triggered Active Scaffold for Reversible Cell Capture and On‐Demand Release , 2013, Advanced materials.

[75]  Janos Vörös,et al.  Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients. , 2007, Biomaterials.

[76]  Jiandong Ding,et al.  Effect of RGD nanospacing on differentiation of stem cells. , 2013, Biomaterials.

[77]  I. Willner,et al.  Layered Metal Nanoparticle Structures on Electrodes for Sensing, Switchable Controlled Uptake/Release, and Photo-electrochemical Applications. , 2016, Small.

[78]  Stephan Schmidt,et al.  Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates , 2010 .

[79]  H. Kessler,et al.  Synthesis of Binary Nanopatterns on Hydrogels for Initiating Cellular Responses , 2016 .

[80]  Charles W. Peak,et al.  Gradient nanocomposite hydrogels for interface tissue engineering. , 2017, Nanomedicine : nanotechnology, biology, and medicine.

[81]  E Ruoslahti,et al.  Integrin signaling. , 1999, Science.

[82]  L. Faxälv,et al.  Gradients in surface nanotopography used to study platelet adhesion and activation. , 2013, Colloids and surfaces. B, Biointerfaces.

[83]  Mercedes Crego-Calama,et al.  Self-assembling nanoparticles at surfaces and interfaces. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[84]  Dean-Mo Liu,et al.  Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[85]  L. Gentilucci,et al.  Selective detection of α4β1 integrin (VLA‐4)‐expressing cells using peptide‐functionalized nanostructured materials mimicking endothelial surfaces adjacent to inflammatory sites , 2018, Biopolymers.

[86]  H. Kafil,et al.  Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. , 2016, International journal of biological macromolecules.

[87]  Haobo Pan,et al.  3D‐Bioprinted Osteoblast‐Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo , 2017, Advanced science.

[88]  N. S. Kehr Enantiomorphous Periodic Mesoporous Organosilica-Based Nanocomposite Hydrogel Scaffolds for Cell Adhesion and Cell Enrichment. , 2016, Biomacromolecules.

[89]  M. Markey,et al.  Modulation of endothelial cell migration via manipulation of adhesion site growth using nanopatterned surfaces. , 2015, ACS applied materials & interfaces.

[90]  M. Delcea,et al.  Fabrication of quantum dot microarrays using electron beam lithography for applications in analyte sensing and cellular dynamics. , 2013, ACS nano.

[91]  J. Jose,et al.  Chirality-dependent cell adhesion and enrichment in Janus nanocomposite hydrogels. , 2018, Nanomedicine : nanotechnology, biology, and medicine.

[92]  S. Pacelli,et al.  Controlling Adult Stem Cell Behavior Using Nanodiamond-Reinforced Hydrogel: Implication in Bone Regeneration Therapy , 2017, Scientific Reports.

[93]  J. Lahann,et al.  Physical aspects of cell culture substrates: topography, roughness, and elasticity. , 2012, Small.

[94]  Benjamin Geiger,et al.  Cell interactions with hierarchically structured nano-patterned adhesive surfaces. , 2009, Soft matter.

[95]  Y. Chabal,et al.  Unusual infrared-absorption mechanism in thermally reduced graphene oxide. , 2010, Nature materials.

[96]  W. Liu,et al.  Pt and Au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: Influences of bimetallic effect and silica support , 2018 .

[97]  Lichun Lu,et al.  Electrically conductive nanocomposite hydrogels embedded with functionalized carbon nanotubes for spinal cord injury , 2018 .

[98]  Joachim P Spatz,et al.  Impact of order and disorder in RGD nanopatterns on cell adhesion. , 2009, Nano letters.

[99]  E. Katz,et al.  Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[100]  Shancheng Yan,et al.  Stable black phosphorus quantum dots for alkali PH sensor , 2018 .

[101]  E. Tobiasch,et al.  Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation , 2019, Pharmaceutics.

[102]  Akhilesh K. Gaharwar,et al.  Injectable shear-thinning nanoengineered hydrogels for stem cell delivery. , 2016, Nanoscale.

[103]  H. Kessler,et al.  Highly Ordered Gold Nanopatterned Indium Tin Oxide Electrodes for Simultaneous Optical and Electrochemical Probing Cell Interactions. , 2017, Analytical chemistry.

[104]  R. Reis,et al.  Nanoparticles for bone tissue engineering , 2017, Biotechnology progress.

[105]  Y. Lei,et al.  Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence. , 2005, Journal of the American Chemical Society.

[106]  Ali Khademhosseini,et al.  Bioinspired materials for controlling stem cell fate. , 2010, Accounts of chemical research.

[107]  M. Meyyappan,et al.  Nanotechnology: Role in emerging nanoelectronics , 2006 .

[108]  Vinayak Sant,et al.  Graphene-based nanomaterials for drug delivery and tissue engineering. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[109]  Jianhua Zhang,et al.  Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications , 2015, Nanomaterials.

[110]  Jianguo Sun,et al.  Fabrication of micropatterns of nanoarrays on a polymeric gel surface. , 2010, Nanoscale.

[111]  V. Rotello,et al.  Cell alignment using patterned biocompatible gold nanoparticle templates. , 2012, Small.

[112]  Yi Cao,et al.  Hierarchical construction of a mechanically stable peptide-graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo. , 2015, Nanoscale.

[113]  J. Vacanti,et al.  Tissue engineering. , 1993, Science.

[114]  Jun Lin,et al.  Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy , 2017 .

[115]  Akhilesh K Gaharwar,et al.  Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. , 2011, Acta biomaterialia.

[116]  Lianhui Wang,et al.  RGD-QD-MoS2 nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. , 2017, Nanoscale.

[117]  J. Spatz,et al.  Site-specific presentation of single recombinant proteins in defined nanoarrays , 2007, Biointerphases.

[118]  Shiyu Li,et al.  Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation. , 2015, Nano letters.

[119]  Lin Yu,et al.  Matrix Stiffness and Nanoscale Spatial Organization of Cell-Adhesive Ligands Direct Stem Cell Fate. , 2015, Nano letters.

[120]  V. Rotello,et al.  Rapid phenotyping of cancer stem cells using multichannel nanosensor arrays. , 2018, Nanomedicine : nanotechnology, biology, and medicine.

[121]  J. Horton,et al.  Self-Assembled N-Heterocyclic Carbene-Based Carboxymethylated Dextran Monolayers on Gold as a Tunable Platform for Designing Affinity-Capture Biosensor Surfaces. , 2018, ACS applied materials & interfaces.

[122]  A. Saven,et al.  Activated integrin αvβ3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[123]  L. Gentilucci,et al.  Diagnostic Implementation of Fast and Selective Integrin-Mediated Adhesion of Cancer Cells on Functionalized Zeolite L Monolayers. , 2015, Bioconjugate chemistry.

[124]  R. Sijbesma,et al.  Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications. , 2018, Macromolecular bioscience.

[125]  A. Khademhosseini,et al.  Injectable Graphene Oxide/Hydrogel-Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair , 2014, ACS nano.

[126]  S. Shahrokhian,et al.  Nanoporous gold as a suitable substrate for preparation of a new sensitive electrochemical aptasensor for detection of Salmonella typhimurium , 2018 .

[127]  J. Y. Lee,et al.  Exercising spatiotemporal control of cell attachment with optically transparent microelectrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[128]  Ali Khademhosseini,et al.  Progress in tissue engineering. , 2009, Scientific American.

[129]  Seunghun Hong,et al.  Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods. , 2018, Nano letters.

[130]  Esma Dervisevic,et al.  Design of amperometric urea biosensor based on self-assembled monolayer of cystamine/PAMAM-grafted MWCNT/Urease , 2018 .

[131]  D. Wirtz,et al.  Triggering cell detachment from patterned electrode arrays by programmed subcellular release , 2010, Nature Protocols.

[132]  L. De Cola,et al.  Surface‐Mediated Stimuli Responsive Delivery of Organic Molecules from Porous Carriers to Adhered Cells , 2016, Advanced healthcare materials.

[133]  A. Khademhosseini,et al.  Hydrogels in Regenerative Medicine , 2009, Advanced materials.

[134]  Ali Khademhosseini,et al.  Carbon-based nanomaterials: multifunctional materials for biomedical engineering. , 2013, ACS nano.

[135]  J. Spatz,et al.  Technique of surface modification of a cell-adhesion-resistant hydrogel by a cell-adhesion-available inorganic microarray. , 2008, Biomacromolecules.

[136]  K. Bushara,et al.  Functional magnetic resonance imaging (fMRI) clinical studies in ALS--paradigms, problems and promises. , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[137]  A. Khademhosseini,et al.  Cell‐laden Microengineered and Mechanically Tunable Hybrid Hydrogels of Gelatin and Graphene Oxide , 2013, Advanced materials.

[138]  E. Tasciotti,et al.  Nanocomposite Hydrogels as Platform for Cells Growth, Proliferation, and Chemotaxis. , 2016, Small.

[139]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[140]  Xin Zhao,et al.  Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. , 2017, Chemical reviews.

[141]  Kezhi Zheng,et al.  Advances in highly doped upconversion nanoparticles , 2018, Nature Communications.

[142]  Shiyu Li,et al.  Interplay of Matrix Stiffness and Cell-Cell Contact in Regulating Differentiation of Stem Cells. , 2016, ACS applied materials & interfaces.

[143]  A. Ahmadi,et al.  Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. , 2017, Biosensors & bioelectronics.

[144]  H. Galla,et al.  Click chemistry on self-assembled monolayer of zeolite L crystals by microcontact printing – Applications in nanobiotechnology , 2011 .

[145]  Kathrin Benson,et al.  Periodic mesoporous organosilica-based nanocomposite hydrogels as three-dimensional scaffolds. , 2013, Angewandte Chemie.

[146]  L. Chu,et al.  Novel Biocompatible Thermoresponsive Poly(N-vinyl Caprolactam)/Clay Nanocomposite Hydrogels with Macroporous Structure and Improved Mechanical Characteristics. , 2017, ACS applied materials & interfaces.

[147]  Jun‐Jie Zhu,et al.  Robust nonenzymatic hybrid nanoelectrocatalysts for signal amplification toward ultrasensitive electrochemical cytosensing. , 2014, Journal of the American Chemical Society.

[148]  A. Khademhosseini,et al.  Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology , 2006 .

[149]  Molly M. Stevens,et al.  Biomaterials for bone tissue engineering , 2008 .