Relic neutrino decoupling with flavour oscillations revisited

We study the decoupling process of neutrinos in the early universe in the presence of three-flavour oscillations. The evolution of the neutrino spectra is found by solving the corresponding momentum-dependent kinetic equations for the neutrino density matrix, including for the first time the proper collision integrals for both diagonal and off-diagonal elements. This improved calculation modifies the evolution of the off-diagonal elements of the neutrino density matrix and changes the deviation from equilibrium of the frozen neutrino spectra. However, it does not vary the contribution of neutrinos to the cosmological energy density in the form of radiation, usually expressed in terms of the effective number of neutrinos, Neff. We find a value of Neff = 3.045, in agreement with previous theoretical calculations and consistent with the latest analysis of Planck data. This result does not depend on the ordering of neutrino masses. We also consider the effect of non-standard neutrino-electron interactions (NSI), predicted in many theoretical models where neutrinos acquire mass. For two sets of NSI parameters allowed by present data, we find that Neff can be reduced down to 3.040 or enhanced up to 3.059.

[1]  V. Cirigliano,et al.  Neutrino quantum kinetic equations: The collision term , 2016, 1605.09383.

[2]  A. Palazzo,et al.  Neutrino masses and mixings: Status of known and unknown 3ν parameters , 2016, 1601.07777.

[3]  T. Schwetz,et al.  Global Analyses of Neutrino Oscillation Experiments , 2015, 1512.06856.

[4]  G. Fuller,et al.  Neutrino energy transport in weak decoupling and big bang nucleosynthesis , 2015, 1512.02205.

[5]  M. Lattanzi,et al.  Bounds on very low reheating scenarios after Planck , 2015, 1511.00672.

[6]  S. Hannestad,et al.  Active-sterile neutrino oscillations in the early Universe with full collision terms , 2015, 1506.05266.

[7]  O. Miranda,et al.  Non standard neutrino interactions: current status and future prospects , 2015, 1505.06254.

[8]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[9]  J. Rafelski,et al.  Relic neutrino freeze-out: Dependence on natural constants , 2014, 1406.1759.

[10]  J. Valle,et al.  Neutrino oscillations refitted , 2014, 1405.7540.

[11]  A. Slosar,et al.  A GUIDE TO DESIGNING FUTURE GROUND-BASED COSMIC MICROWAVE BACKGROUND EXPERIMENTS , 2014, 1402.4108.

[12]  A. G. Vieregg,et al.  Neutrino Physics from the Cosmic Microwave Background and Large-Scale Structure , 2013, 1309.5383.

[13]  Ole Eggers Bjælde,et al.  Dark energy properties from large future galaxy surveys , 2013, 1304.2321.

[14]  J. Lesgourgues,et al.  Neutrino Cosmology by Julien Lesgourgues , 2013 .

[15]  J. Lesgourgues,et al.  Cosmological lepton asymmetry with a nonzero mixing angle θ 13 , 2012, 1204.2510.

[16]  G. Miele,et al.  Updated BBN bounds on the cosmological lepton asymmetry for non-zero 13 , 2011, 1110.4335.

[17]  E. Martinez,et al.  Non-Standard Neutrino Interactions , 2011 .

[18]  M. Guzzo,et al.  Constraining nonstandard neutrino interactions with electrons , 2011 .

[19]  O. Miranda Constraining non standard neutrino-electron interactions , 2010 .

[20]  O. Miranda,et al.  Constraining nonstandard neutrino-electron interactions , 2007, 0711.0698.

[21]  G. Miele,et al.  EFFECTS OF NON-STANDARD NEUTRINO-ELECTRON INTERACTIONS ON RELIC NEUTRINO DECOUPLING , 2006, hep-ph/0607267.

[22]  G. Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005, hep-ph/0506164.

[23]  Arcadi Santamaria,et al.  Present and future bounds on non-standard neutrino interactions , 2003, hep-ph/0302093.

[24]  S. Petcov,et al.  Cosmological bounds on neutrino degeneracy improved by flavor oscillations , 2002, hep-ph/0201287.

[25]  G. Miele,et al.  A precision calculation of the effective number of cosmological neutrinos , 2001, astro-ph/0111408.

[26]  Z. Berezhiani,et al.  Limits on the non-standard interactions of neutrinos from e + e - colliders , 2001, hep-ph/0111137.

[27]  S. Esposito,et al.  Non equilibrium spectra of degenerate relic neutrinos , 2000, astro-ph/0005573.

[28]  N. Bell,et al.  Relic neutrino asymmetry evolution from first principles , 1998, hep-ph/9809363.

[29]  A. Dolgov,et al.  Nonequilibrium Corrections to the Spectra of Massless Neutrinos in the Early Universe - Addendum , 1998, hep-ph/9805467.

[30]  O. Gnedin,et al.  Cosmological Neutrino Background Revisited , 1997, astro-ph/9712199.

[31]  A. Dolgov,et al.  Non-equilibrium corrections to the spectra of massless neutrinos in the early universe , 1997, hep-ph/9703315.

[32]  N. Fornengo,et al.  Finite temperature effects on the neutrino decoupling in the early Universe , 1997, hep-ph/9702324.

[33]  S. Hannestad,et al.  Neutrino decoupling in the early Universe. , 1995, Physical review. D, Particles and fields.

[34]  Mckellar,et al.  Oscillating neutrinos in the early Universe. , 1994, Physical review. D, Particles and fields.

[35]  Heckler Astrophysical applications of quantum corrections to the equation of state of a plasma. , 1994, Physical review. D, Particles and fields.

[36]  G. Raffelt,et al.  General kinetic description of relativistic mixed neutrinos , 1993 .

[37]  S. Dodelson,et al.  Nonequilibrium neutrino statistical mechanics in the expanding Universe. , 1992, Physical review. D, Particles and fields.

[38]  M. Thomson,et al.  Stringent cosmological bounds on inert neutrino mixing , 1992 .

[39]  Mitra,et al.  Effect of neutrino heating in the early Universe on neutrino decoupling temperatures and nucleosynthesis. , 1991, Physical review. D, Particles and fields.

[40]  Michael S. Turner,et al.  Primordial Nucleosynthesis Including Radiative, Coulomb, and Finite Temperature Corrections to Weak Rates , 1982 .

[41]  J. Lesgourgues,et al.  Neutrino Cosmology: Preface , 2013 .

[42]  J. Lesgourgues,et al.  NEUTRINO IN COSMOLOGY , 2010 .

[43]  S. Hacyan,et al.  Relaxation time of neutrinos in the early universe , 1989 .