The circumstellar environments of high-mass protostellar objects

We present maps of the 850 µm and 450 µm continuum emission seen towards a sample of 68 high-mass protostellar candidates with luminosities ranging from 10 2.5 Lto ∼10 5 L� . Most of these candidate high-mass stars are in the earliest stages of evolution, and have not yet developed an ultra-compact HII region. We observe a variety of continuum emission morphologies, from compact symmetric sources through to multiple cores embedded in long filaments of emission. We find on average there is a 65% probability of an IRAS point-source having a companion detection at submillimetre wavelengths. The ratio of integrated flux to peak flux for our detections shows no strong dependence on distance, suggesting the emission we have observed is primarily from scale-free envelopes with power-law density structures. Assuming a near kinematic distance projection, the clumps we detect vary in mass from ∼1 Mto over 1000 M� , with a mean clump mass of 330 M� , column density of 9 × 10 23 cm −2 and diameter of ∼0.6 pc. The high luminosity and low mass of the smallest clumps suggests they are accompanied by a minimal number of stellar companions, while the most massive clumps may be examples of young protogroups and protoclusters. We measure the spectral index of the dust emission (α) and the spectral index of the dust grain opacity (β) towards each object, finding clumps with morphologies suggestive of strong temperature gradients, and of grain growth in their dense inner regions. We find a mean value for β of 0.9, significantly smaller than observed towards UCHII regions.

[1]  L. Close,et al.  Near-Infrared Adaptive Optics Imaging of the Embedded Cluster NGC 2024 , 2002, astro-ph/0210053.

[2]  S. Molinari,et al.  The Formation of Massive Stars. I. High-Resolution Millimeter and Radio Studies of High-Mass Protostellar Candidates , 2002 .

[3]  A. M. Ghez,et al.  A High Angular Resolution Multiplicity Survey of the Open Clusters α Persei and Praesepe , 2001, astro-ph/0111156.

[4]  K. Menten,et al.  Massive molecular outflows , 2001, astro-ph/0110372.

[5]  T. K. Sridharan,et al.  High-Mass Proto-Stellar Candidates - II : Density structure from dust continuum and CS emission , 2001, astro-ph/0110370.

[6]  K. Menten,et al.  High-Mass Protostellar Candidates. I. The Sample and Initial Results , 2001, astro-ph/0110363.

[7]  T. Nikola,et al.  Mid-infrared observations of methanol maser sites and ultracompact H ii regions: signposts of high-mass star formation , 2001 .

[8]  R. Behrend,et al.  Formation of massive stars by growing accretion rate , 2001, astro-ph/0105054.

[9]  Todd R. Hunter,et al.  Search for CO Outflows toward a Sample of 69 High-Mass Protostellar Candidates: Frequency of Occurrence , 2001 .

[10]  S. Molinari,et al.  A molecular-line study of clumps with embedded high-mass protostar candidates , 2001, astro-ph/0103223.

[11]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[12]  T. Jenness,et al.  The SCUBA map reduction cookbook , 2001 .

[13]  Frédérique Motte,et al.  The circumstellar environment of low-mass protostars: A millimeter continuum mapping survey ? , 2001 .

[14]  G. Sandell,et al.  Testing Envelope Models of Young Stellar Objects with Submillimeter Continuum and Molecular-Line Observations , 2000, astro-ph/0001021.

[15]  S. Kurtz,et al.  A 1000 AU Rotating Disk around the Massive Young Stellar Object G192.16–3.82 , 1999 .

[16]  Hilo,et al.  SCUBA: A Common - user submillimetre camera operating on the James Clerk Maxwell telescope , 1998, astro-ph/9809122.

[17]  Y. Nakajima,et al.  Clustering of Pre-Main-Sequence Stars in the Orion, Ophiuchus, Chamaeleon, Vela, and Lupus Star-forming Regions , 1998 .

[18]  E. Bergin,et al.  Carbon Monoxide and Dust Column Densities: The Dust-to-Gas Ratio and Structure of Three Giant Molecular Cloud Cores , 1997 .

[19]  Origin of the Mass in Massive Star Outflows , 1997 .

[20]  T. K. Sridharan,et al.  The Circumstellar Environments of High Mass Protostellar Objects , 1997 .

[21]  Sridharan T. K.,et al.  Reliable Galaxy-wide identification of ultracompact H II regions , 1995 .

[22]  C. Purton,et al.  Millimeter and Submillimeter Wavelength Continuum Observations of Massive Young Stellar Objects , 1995 .

[23]  R. Larson Star formation in groups , 1995 .

[24]  Vincent Mannings,et al.  Dust in discs around T Tauri stars : grain growth ? , 1994 .

[25]  F. Shu,et al.  Collapse of magnetized molecular cloud cores. I: Semianalytical solution , 1993 .

[26]  L. Hartmann,et al.  Spatial distribution of pre-main sequence stars in Taurus. , 1993 .

[27]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[28]  J. Mathis,et al.  Composite interstellar grains , 1989 .

[29]  E. Churchwell,et al.  Massive stars embedded in molecular clouds - Their population and distribution in the galaxy , 1989 .

[30]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[31]  P. Myers,et al.  Dense cores in dark clouds. II. NH3 observations and star formation. , 1983 .

[32]  H. J. Habing,et al.  Compact H II Regions and OB Star Formation , 1979 .

[33]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[34]  P. Aannestad Absorptive properties of silicate core-mantle grains , 1975 .

[35]  D. Y. Gezari,et al.  OBSERVATIONS OF THE GALACTIC NUCLEUS AT 350 MICRONS. , 1973 .

[36]  E. Salpeter The Luminosity function and stellar evolution , 1955 .