Threshold Selection in Extreme Value Analysis
暂无分享,去创建一个
[1] Piet Groeneboom,et al. Kernel-type estimators for the extreme value index , 2003 .
[2] Frederico Caeiro,et al. Semi-parametric tail inference through probability-weighted moments , 2011 .
[3] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[4] Sidney I. Resnick,et al. How to make a Hill Plot , 2000 .
[5] Frederico Caeiro,et al. An Overview And Open Research Topics In Statistics Of Univariate Extremes , 2012 .
[6] M. Ivette Gomes,et al. A new class of semi-parametric estimators of the second order parameter. , 2003 .
[7] M. Gomes,et al. Modeling Extreme Events: Sample Fraction Adaptive Choice in Parameter Estimation , 2012 .
[8] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[9] Paul Deheuvels,et al. Kernel Estimates of the Tail Index of a Distribution , 1985 .
[10] M. Ivette Gomes,et al. The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .
[11] Jan Beirlant,et al. Excess functions and estimation of the extreme-value index , 1996 .
[12] Edgar Kaufmann,et al. Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .
[13] S. Resnick. Heavy tail modeling and teletraffic data: special invited paper , 1997 .
[14] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[15] A Note on the Adaptive Choice of the Optimal Threshold in Extreme Value Analysis , 2011 .
[16] M. J. Martins,et al. “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .
[17] Peter Hall,et al. Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems , 1990 .
[18] J. Hüsler,et al. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields , 2007 .
[19] M. Ivette Gomes,et al. Extreme Value Theory and Statistics of Univariate Extremes: A Review , 2015 .
[20] Björn Vandewalle,et al. A heuristic adaptive choice of the threshold for bias-corrected Hill estimators , 2008 .
[21] Zhang Chun-ying. Threshold selection in tail index estimation , 2006 .
[22] M. Ivette Gomes,et al. Reduced-Bias Tail Index Estimators Under a Third-Order Framework , 2009 .
[23] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[24] M. Ivette Gomes,et al. Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study , 2011, Commun. Stat. Simul. Comput..
[25] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[26] Fernanda Figueiredo,et al. Adaptive estimation of heavy right tails: resampling-based methods in action , 2012 .
[27] Stefan Wager,et al. Subsampling extremes: From block maxima to smooth tail estimation , 2012, J. Multivar. Anal..
[28] M. Gomes,et al. Adaptive Reduced-Bias Tail Index and VaR Estimation via the Bootstrap Methodology , 2011 .
[29] Hogeschool-Universiteit Brussel,et al. GENERALIZED SUM PLOTS , 2011 .
[30] M. Ivette Gomes,et al. Adaptive PORT–MVRB estimation: an empirical comparison of two heuristic algorithms , 2013 .
[31] S. Resnick,et al. The qq-estimator and heavy tails , 1996 .
[32] A. Frigessi,et al. A Dynamic Mixture Model for Unsupervised Tail Estimation without Threshold Selection , 2002 .
[33] S. Csörgo,et al. Estimating the tail index , 1998 .
[34] R. Reiss,et al. Statistical Analysis of Extreme Values-with applications to insurance , 1997 .
[35] Carl Scarrott,et al. A Review of Extreme Value Threshold Estimation and Uncertainty Quantification , 2012 .
[36] Eric P. Smith,et al. An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.
[37] S. Resnick,et al. Smoothing the Hill estimator , 1997 .
[38] J. Teugels,et al. Statistics of Extremes , 2004 .
[39] J. Teugels,et al. Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .
[40] Armelle Guillou,et al. A diagnostic for selecting the threshold in extreme value analysis , 2001 .
[41] M. Ivette Gomes,et al. DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .
[42] L. Haan,et al. Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .
[43] M. J. Martins,et al. Averages of Hill estimators , 2004 .
[44] J. Teugels,et al. Practical Analysis of Extreme Values , 1996 .
[45] M. Gomes,et al. A computational study of a quasi-PORT methodology for VaR based on second-order reduced-bias estimation , 2012 .
[46] M. Ivette Gomes,et al. A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .
[47] George Michailidis,et al. A Diagnostic Plot for Estimating the Tail Index of a Distribution , 2004 .
[48] Jan Beirlant,et al. On Exponential Representations of Log-Spacings of Extreme Order Statistics , 2002 .