Time-varying transformations for Hill–Clohessy–Wiltshire solutions in elliptic orbits

The relative motion of chief and deputy satellites in close proximity with orbits of arbitrary eccentricity can be approximated by linearized time-periodic equations of motion. The linear time-invariant Hill–Clohessy–Wiltshire equations are typically derived from these equations by assuming the chief satellite is in a circular orbit. Two Lyapunov–Floquet transformations and an integral-preserving transformation are here presented which relate the linearized time-varying equations of relative motion to the Hill–Clohessy–Wiltshire equations in a one-to-one manner through time-varying coordinate transformations. These transformations allow the Hill–Clohessy–Wiltshire equations to describe the linearized relative motion for elliptic chief satellites.

[1]  John L. Goodman,et al.  History of Space Shuttle Rendezvous and Proximity Operations , 2006 .

[2]  Oleg Polovnikov,et al.  Navigation and steering during manual rendezvous with the space station , 2004 .

[3]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[4]  J. Junkins,et al.  Spacecraft Formation Flying , 2003 .

[5]  Howard D. Curtis,et al.  Orbital Mechanics for Engineering Students , 2005 .

[6]  S. Dhurandhar,et al.  Fundamentals of the LISA stable flight formation , 2004, gr-qc/0410093.

[7]  Oliver Montenbruck,et al.  Navigation and control of the TanDEM-X formation , 2008 .

[8]  T. Carter State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example , 1998 .

[9]  Giancarmine Fasano,et al.  Modeling orbital relative motion to enable formation design from application requirements , 2009 .

[10]  Bong Wie,et al.  Dynamics and Control of Gravity Tractor Spacecraft for Asteroid Deflection , 2008 .

[11]  Colin R. McInnes,et al.  Safety Constrained Free-Flyer Path Planning at the International Space Station , 2000 .

[12]  K. Alfriend,et al.  Minimum-time orbital rendezvous between neighboring elliptic orbits , 1969 .

[13]  J. Vinet,et al.  On the minimum flexing of LISA's arms , 2006 .

[14]  Simone D'Amico,et al.  Spaceborne Autonomous Formation Flying Experiment on the PRISMA Mission , 2011 .

[15]  K. Yamanaka,et al.  New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit , 2002 .

[16]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[17]  P. Visser GOCE gradiometer: estimation of biases and scale factors of all six individual accelerometers by precise orbit determination , 2007 .

[18]  John L. Junkins,et al.  Analytical Mechanics of Space Systems, Second Edition: Second Edition , 2009 .

[19]  Benjamin O. Lange,et al.  The application of Floquet theory to the computation of small orbital perturbations over long time intervals using the Tschauner- Hempel equations , 1965 .

[20]  Riccardo Bevilacqua,et al.  Multiple spacecraft rendezvous maneuvers by differential drag and low thrust engines , 2009 .

[21]  Evgeny Menkin,et al.  Generalized Separation of an Object Jettisoned from the ISS , 2006 .

[22]  S. C. Sinha,et al.  Control of General Dynamic Systems With Periodically Varying Parameters Via Liapunov-Floquet Transformation , 1994 .

[23]  O. Jennrich,et al.  LISA satellite formation control , 2007 .

[24]  Steven G. Tragesser,et al.  GUIDANCE FOR RELATIVE MOTION OF LOW EARTH ORBIT SPACECRAFT BASED ON RELATIVE ORBIT ELEMENTS , 2004 .

[25]  Oliver Montenbruck,et al.  Autonomous Formation Flying for the PRISMA Mission , 2007 .

[26]  Ryan E. Sherrill Dynamics and Control of Satellite Relative Motion in Elliptic Orbits using Lyapunov-Floquet Theory , 2013 .

[27]  G. Hill Researches in the Lunar Theory , 1878 .

[28]  J. P. De Vries,et al.  ELLIPTIC ELEMENTS IN TERMS OF SMALL INCREMENTS OF POSITION AND VELOCITY COMPONENTS , 1963 .

[29]  Marcello Romano,et al.  Flight Testing of Multiple-Spacecraft Control on SPHERES During Close-Proximity Operations , 2009 .