Multiresolution Matrix Factorization
暂无分享,去创建一个
[1] W MahoneyMichael,et al. Fast Monte Carlo Algorithms for Matrices III , 2006 .
[2] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[3] P. Visscher,et al. GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.
[4] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[5] Michael W. Mahoney. Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..
[6] Y. Meyer,et al. Harmonic Analysis on Spaces of Homogeneous Type , 2008 .
[7] Pierre Vandergheynst,et al. Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.
[8] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[9] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[10] A. Cohen. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .
[11] Ann B. Lee,et al. Treelets--An adaptive multi-scale basis for sparse unordered data , 2007, 0707.0481.
[12] K. Taira. Proof of Theorem 1.3 , 2004 .
[13] Kathryn Roeder,et al. REFINING GENETICALLY INFERRED RELATIONSHIPS USING TREELET COVARIANCE SMOOTHING. , 2012, The annals of applied statistics.
[14] W. Zachary,et al. An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.
[15] Inderjit S. Dhillon,et al. Clustered low rank approximation of graphs in information science applications , 2011, SDM.
[16] Inderjit S. Dhillon,et al. Weighted Graph Cuts without Eigenvectors A Multilevel Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[17] Arthur D. Szlam,et al. Diffusion wavelet packets , 2006 .
[18] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[19] Ming-Deh A. Huang,et al. Proof of proposition 2 , 1992 .
[20] Ameet Talwalkar,et al. Sampling Methods for the Nyström Method , 2012, J. Mach. Learn. Res..
[21] Achi Brandt,et al. Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver , 2011, SIAM J. Sci. Comput..
[22] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[23] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[24] C. Jacobi,et al. C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .
[25] Ronald R. Coifman,et al. Multiscale Wavelets on Trees, Graphs and High Dimensional Data: Theory and Applications to Semi Supervised Learning , 2010, ICML.
[26] R. Coifman,et al. Diffusion Wavelets , 2004 .
[27] C. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .
[28] U. Feige,et al. Spectral Graph Theory , 2015 .
[29] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[30] Qiang Yang,et al. Contextual Collaborative Filtering via Hierarchical Matrix Factorization , 2012, SDM.
[31] Christos Faloutsos,et al. Graph evolution: Densification and shrinking diameters , 2006, TKDD.
[32] G. MallatS.. A Theory for Multiresolution Signal Decomposition , 1989 .
[33] Michael W. Mahoney,et al. Revisiting the Nystrom Method for Improved Large-scale Machine Learning , 2013, J. Mach. Learn. Res..
[34] Francis R. Bach,et al. Structured Sparse Principal Component Analysis , 2009, AISTATS.
[35] Christos Faloutsos,et al. Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..
[36] J. Edmonds. Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.