The finitistic dimension conjecture via DG-rings

A BSTRACT . Given an associative ring A , we present a new approach for establishing the finiteness of the big finitistic projective dimension FPD( A ) . The idea is to find a sufficiently nice non-positively graded differential graded ring B such that H 0 ( B ) = A and such that FPD( B ) < ∞ . We show that one can always find such a B provided that A is noetherian and has a noncommutative dualizing complex. We then use the intimate relation between D ( B ) and D (H 0 ( B )) to deduce results about FPD( A ) . As an application, we generalize a recent sufficient condition of Rickard, for FPD( A ) < ∞ in terms of generation of D ( A ) from finite dimensional algebras over a field to all noetherian rings which admit a dualizing complex.

[1]  P. Sridhar,et al.  Finitistic dimensions over commutative DG-rings , 2022, 2204.06865.

[2]  Minseon Shin Derived Categories , 2021, Homological Theory of Representations.

[3]  Wendy Lowen,et al.  t-structures and twisted complexes on derived injectives , 2019, Advances in Mathematics.

[4]  Hiroyuki Minamoto,et al.  Resolutions and homological dimensions of DG-modules , 2018, Israel Journal of Mathematics.

[5]  J. Rickard Unbounded derived categories and the finitistic dimension conjecture , 2018, Advances in Mathematics.

[6]  Liran Shaul Injective DG-modules over non-positive DG-rings , 2017, Journal of Algebra.

[7]  L. Positselski Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre–Grothendieck duality , 2015, 1504.00700.

[8]  J. Šťovíček On purity and applications to coderived and singularity categories , 2014, 1412.1615.

[9]  Amnon Yekutieli Duality and Tilting for Commutative DG Rings , 2013, 1312.6411.

[10]  H. Krause,et al.  Stratifying triangulated categories , 2009, 0910.0642.

[11]  Kanzo Masaike On τ-coherent rings , 2008 .

[12]  A. Neeman The homotopy category of flat modules, and Grothendieck duality , 2008 .

[13]  H. Krause,et al.  Local cohomology and support for triangulated categories , 2007, math/0702610.

[14]  H. Krause,et al.  Acyclicity versus total acyclicity for complexes over noetherian rings , 2005, Documenta Mathematica.

[15]  H. Krause the stable derived category of a noetherian scheme , 2004, Compositio Mathematica.

[16]  James J. Zhang,et al.  Dualizing complexes and perverse modules over differential algebras , 2003, Compositio Mathematica.

[17]  Peter Jørgensen The homotopy category of complexes of projective modules , 2003, math/0312088.

[18]  Peter Jørgensen Finite flat and projective dimension , 2003, math/0312087.

[19]  Peter Jørgensen,et al.  Gorenstein differential graded algebras , 2003 .

[20]  Peter Jørgensen Recognizing dualizing complexes , 2003, math/0303105.

[21]  T. Kawasaki On arithmetic Macaulayfication of Noetherian rings , 2001 .

[22]  A. K. Bowsfield THE LOCALIZATION OF SPECTRA WITH RESPECT TO HOMOLOGY , 2001 .

[23]  James J. Zhang,et al.  Rings with Auslander Dualizing Complexes , 1998, math/9804005.

[24]  M. Bergh Existence Theorems for Dualizing Complexes over Non-commutative Graded and Filtered Rings , 1997 .

[25]  B. Z. Huisgen The Finitistic Dimension Conjectures — A Tale of 3.5 Decades , 1995 .

[26]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[27]  Amnon Yekutieli Dualizing complexes over noncommutative graded algebras , 1992 .

[28]  A. Neeman,et al.  The chromatic tower for D(R) , 1992 .

[29]  J. O'neill On direct products of modules , 1984 .

[30]  T. Ogoma Existence of dualizing complexes , 1984 .

[31]  H. Foxby Isomorphims between complexes with applications to the homological theory of modules. , 1977 .

[32]  M. Raynaud,et al.  Critères de platitude et de projectivité , 1971 .

[33]  R. Hartshorne Residues And Duality , 1966 .

[34]  H. Bass Injective dimension in Noetherian rings , 1962 .

[35]  Masayoshi Nagata,et al.  Local Rings , 2022 .