Review of high-temperature central receiver designs for concentrating solar power

[1]  Mohd. Kaleem Khan,et al.  Performance enhancement of solar collectors—A review , 2015 .

[2]  Ricardo Vasquez Padilla,et al.  Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers , 2015 .

[3]  Christopher Sansom,et al.  Coatings for concentrating solar systems – A review , 2015 .

[4]  Fahad A. Al-Sulaiman,et al.  Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower , 2015 .

[5]  Ž. Knez,et al.  Industrial applications of supercritical fluids: A review , 2014 .

[6]  Brian D. Iverson,et al.  High-efficiency thermodynamic power cycles for concentrated solar power systems , 2014 .

[7]  Reiner Buck,et al.  Operation strategies for falling particle receivers , 2013 .

[8]  Sheldon Jeter,et al.  Experimental Study of a Sand–Air Heat Exchanger for Use With a High-Temperature Solar Gas Turbine System , 2012 .

[9]  A. R. Mahoney,et al.  Characterization of Pyromark 2500 for High-Temperature Solar Receivers , 2012 .

[10]  Clifford K. Ho,et al.  CFD Simulation and Heat Loss Analysis of the Solar Two Power Tower Receiver. , 2012 .

[11]  Kumar Sridharan,et al.  Materials corrosion in molten LiF-NaF-KF eutectic salt under different reduction-oxidation conditions , 2012 .

[12]  G. Delussu,et al.  A qualitative thermo-fluid-dynamic analysis of a CO2 solar pipe receiver , 2012 .

[13]  E. Wang,et al.  Analytical model for the design of volumetric solar flow receivers , 2012 .

[14]  S. Haigh,et al.  3-D Materials Characterization over a range of time and length scales , 2012 .

[15]  James Ambrosek Molten Chloride Salts for Heat Transfer in Nuclear Systems , 2011 .

[16]  Gregory J. Kolb,et al.  An evaluation of possible next-generation high temperature molten-salt power towers. , 2011 .

[17]  Robert Pitz-Paal,et al.  Direct absorption receivers for high temperatures , 2011 .

[18]  Matthias Hänel,et al.  Jülich Solar Power Tower—Experimental Evaluation of the Storage Subsystem and Performance Calculation , 2011 .

[19]  Reiner Buck,et al.  Face-Down Solid Particle Receiver Using Recirculation , 2011 .

[20]  Nathan P. Siegel,et al.  Solar Selective Coatings for Concentrating Solar Power Central Receivers , 2011, International Thermal Spray Conference.

[21]  John Pye,et al.  Numerical Investigation of Natural Convection Loss From Cavity Receivers in Solar Dish Applications , 2011 .

[22]  Antonio L. Avila-Marin,et al.  Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review , 2011 .

[23]  Gregory J. Kolb,et al.  Power Tower Technology Roadmap and Cost Reduction Plan , 2011 .

[24]  Sandia Report,et al.  An Evaluation of Possible Next-Generation High-Temperature Molten-Salt Power Towers , 2011 .

[25]  Ralf Uhlig,et al.  Transient stresses at metallic solar tube receivers , 2011 .

[26]  Nathan P. Siegel,et al.  CFD Simulation and Performance Analysis of Alternative Designs for High-Temperature Solid Particle Receivers , 2011 .

[27]  Nathan P. Siegel,et al.  Improved High Temperature Solar Absorbers for Use in Concentrating Solar Power Central Receiver Applications , 2011 .

[28]  Heat Exchangers Small Particle Heat Exchangers , 2011 .

[29]  Robert Pitz-Paal,et al.  Assessment of Solar Power Tower Driven Ultrasupercritical Steam Cycles Applying Tubular Central Receivers With Varied Heat Transfer Media , 2010 .

[30]  Lars Amsbeck,et al.  TEST OF A SOLAR-HYBRID MICROTURBINE SYSTEM AND EVALUATION OF STORAGE DEPLOYMENT , 2010 .

[31]  B. Kelly,et al.  Advanced Thermal Storage for Central Receivers with Supercritical Coolants , 2010 .

[32]  Chun Chang,et al.  Thermal model and thermodynamic performance of molten salt cavity receiver , 2010 .

[33]  Nathan P. Siegel,et al.  Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation , 2010 .

[34]  D. Sadowski,et al.  HEAT TRANSFER FROM FLAT SURFACES TO MOVING SAND , 2010 .

[35]  Yitung Chen,et al.  Review of study on solid particle solar receivers , 2010 .

[36]  A. Steinfeld,et al.  Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power via Combined Cycles , 2009 .

[37]  Nathan P. Siegel,et al.  Wind effect on the performance of solid particle solar receivers with and without the protection of an aerowindow , 2009 .

[38]  Ralf Uhlig,et al.  Development of a Broadband Antireflection Coated Transparent Silica Window for a Solar-Hybrid Microturbine System , 2009 .

[39]  Reiner Buck,et al.  Experimental validation of different modeling approaches for solid particle receivers. , 2009 .

[40]  Craig Turchi,et al.  Supercritical CO2 as a Heat Transfer and Power Cycle Fluid for CSP Systems , 2009 .

[41]  Yitung Chen,et al.  Protection of an Aerowindow, One Scheme to Enhance the Cavity Efficiency of a Solid Particle Solar Receiver , 2009 .

[42]  C. Ho,et al.  Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Processes and Storage , 2009 .

[43]  M. J. Persky,et al.  Infrared, spectral, directional-hemispherical reflectance of fused silica, Teflon polytetrafluoroethylene polymer, chrome oxide ceramic particle surface, Pyromark 2500 paint, Krylon 1602 paint, and Duraflect coating. , 2008, Applied optics.

[44]  Ralf Uhlig,et al.  Development of a tube receiver for a solar-hybrid microturbine system , 2008 .

[45]  Zhang Yaoming,et al.  Discussion of Mechanical Design for Pressured Cavity-Air-Receiver in Solar Power Tower System , 2008 .

[46]  Yitung Chen,et al.  Numerical Analysis on the Performance of the Solid Solar Particle Receiver With the Influence of Aerowindow , 2008 .

[47]  Hsuan-Tsung Hsieh,et al.  Computational Fluid Dynamics Modeling of Gas-Particle Flow Within a Solid-Particle Solar Receiver , 2007 .

[48]  N. Siegel,et al.  Central-Station Solar Hydrogen Power Plant , 2007 .

[49]  P. Peterson,et al.  High-Temperature Liquid-Fluoride-Salt Closed-Brayton-Cycle Solar Power Towers , 2007 .

[50]  Nathan P. Siegel,et al.  Solid Particle Receiver Flow Characerization Studies , 2007 .

[51]  Hsuan-Tsung Hsieh,et al.  Numerical Investigation on Optimal Design of Solid Particle Solar Receiver , 2007 .

[52]  Thorsten Denk,et al.  Test and evaluation of a solar powered gas turbine system , 2006 .

[53]  Vaclav Dostal,et al.  High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors , 2006 .

[54]  M. Driscoll,et al.  The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles , 2006 .

[55]  D. Williams,et al.  Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR) , 2006 .

[56]  D. Williams,et al.  Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer Loop , 2006 .

[57]  Manuel Romero,et al.  Analysis of air return alternatives for CRS-type open volumetric reciever , 2004 .

[58]  Vaclav Dostal,et al.  A supercritical carbon dioxide cycle for next generation nuclear reactors , 2004 .

[59]  C. Kennedy Review of Mid- to High-Temperature Solar Selective Absorber Materials , 2002 .

[60]  Gregory J. Kolb,et al.  Final Test and Evaluation Results from the Solar Two Project , 2002 .

[61]  K. Stern High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions , 2000 .

[62]  Anton Meier,et al.  A predictive CFD model for a falling particle receiver/reactor exposed to concentrated sunlight , 1999 .

[63]  James E. Pacheco,et al.  Internal film receiver possibilities for the third generation of central receiver technology , 1999 .

[64]  Abraham Kribus,et al.  The “Porcupine”: A Novel High-Flux Absorber for Volumetric Solar Receivers , 1998 .

[65]  Robert Pitz-Paal,et al.  Experimental and numerical evaluation of the performance and flow stability of different types of open volumetric absorbers under non-homogeneous irradiation , 1997 .

[66]  Harald Ries,et al.  Inherent limitations of volumetric solar receivers , 1996 .

[67]  J. Pacheco,et al.  Assessment of molten-salt solar central-receiver freeze-up and recovery events , 1996 .

[68]  James E. Pacheco,et al.  Investigation of Cold Filling Receiver Panels and Piping in Molten-Nitrate-Salt Central-Receiver Solar Power Plants , 1995 .

[69]  James E. Pacheco,et al.  Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests , 1995 .

[70]  G. Flamant,et al.  Modelling and optimization of a two-slab selective volumetric solar receiver , 1994 .

[71]  Fletcher Miller,et al.  Thermal Modelling of Small Particle Solar Central Receiver , 2000 .

[72]  S. H. Davis,et al.  Thermocapillary breakdown of falling liquid films at high Reynolds numbers , 1993 .

[73]  C. Smithd Design and optimization of tube-type receiver panels for molten salt application. , 1992 .

[74]  Gilles Flamant,et al.  Advanced high-temperature two-slab selective volumetric receiver , 1991 .

[75]  Fletcher Miller,et al.  Theoretical analysis of a high-temperature small-particle solar receiver , 1991 .

[76]  Michael Epstein,et al.  Solar testing of 2 MWth water/steam receiver at the Weizmann Institute solar tower , 1991 .

[77]  J. M. Chavez,et al.  Testing of a porous ceramic absorber for a volumetric air receiver , 1991 .

[78]  Robert Pitz-Paal,et al.  A new concept of a selective solar receiver for high temperature applications , 1991 .

[79]  D. Meeker,et al.  High-temperature stability of ternary nitrate molten salts for solar thermal energy systems , 1990 .

[80]  R. A. Seban,et al.  Heat and mass transfer to a turbulent falling film—II , 1989 .

[81]  C. Tyner Status of the direct absorption receiver panel research experiment: Salt flow and solar test requirements and plans , 1989 .

[82]  Mark S. Bohn,et al.  Heat transfer in molten salt direct absorption receivers , 1989 .

[83]  C. E. Tyner,et al.  Potential of advanced-design solar central receiver power systems , 1989 .

[84]  J. M. Chavez,et al.  A final report on the Phase 1 testing of a molten-salt cavity receiver , 1988 .

[85]  M. Halmann,et al.  Stability of molten nitrate salts containing light absorbing additives as solar flux absorbers , 1988 .

[86]  R. A. Seban,et al.  Heat and mass transfer to a turbulent liquid film , 1988 .

[87]  L. G. Radosevich,et al.  Final report on the power production phase of the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant , 1988 .

[88]  M. Geyer,et al.  Testing an external sodium receiver up to heat fluxes of 2.5 MW/m2: Results and conclusions from the IEA-SSPS high flux experiment conducted at the central receiver system of the Plataforma Solar de Almeria (Spain) , 1988 .

[89]  T. V. Narayanan,et al.  Commercial direct absorption receiver design studies , 1988 .

[90]  C. E. Tyner,et al.  Direct absorption receiver flow testing and evaluation , 1988 .

[91]  B. L. Kistler,et al.  Fatigue analysis of a solar central receiver design using measured weather data , 1987 .

[92]  R. W. Bradshaw,et al.  A review of the chemical and physical properties of molten alkali nitrate salts and their effect on materials used for solar central receivers , 1987 .

[93]  M. Bohn Experimental investigation of the direct absorption receiver concept , 1987 .

[94]  P. K. Falcone A handbook for solar central receiver design , 1986 .

[95]  N E Bergan,et al.  Testing of the Molten Salt Electric Experiment solar central receiver in an external configuration , 1986 .

[96]  B. R. Steele,et al.  A solid particle central receiver for solar energy , 1986 .

[97]  C. R. Fay,et al.  Project management for a pilot plant control system , 1986 .

[98]  T. Newell,et al.  FILM STABILITY FOR DIRECT ABSORPTION RECEIVERS , 1986 .

[99]  T. M. Thomas,et al.  Corrosion of selected alloys in eutectic lithium-sodium-potassium carbonate at 900C , 1986 .

[100]  Richard Burrows,et al.  Optical Properties Of High-Temperature Materials For Direct Absorption Receivers , 1985, Optics & Photonics.

[101]  T. Newell,et al.  Film flow characteristics for direct absorption solar receiver surfaces , 1985 .

[102]  B. W. Webb,et al.  Analysis of Heat Transfer and Solar Radiation Absorption in an Irradiated Thin, Falling Molten Salt Film , 1985 .

[103]  R. A. Seban,et al.  Heat transfer in wavy liquid films , 1985 .

[104]  J. E. Noring,et al.  Assessment of a solid particle receiver for a high temperature solar central receiver system , 1985 .

[105]  D L Siebers,et al.  Estimating convective energy losses from solar central receivers , 1984 .

[106]  L. P. Drouot,et al.  The Themis Program and the 2500-KW Themis Solar Power Station at Targasonne , 1984 .

[107]  P. Suter,et al.  Study of solid-gas-suspensions used for direct absorption of concentrated solar radiation , 1979 .

[108]  S. Yih,et al.  Hydrodynamic stability of thin liquid films flowing down an inclined plane with accompanying heat transfer and interfacial shear , 1978 .

[109]  William D. Drotning,et al.  Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid☆ , 1978 .

[110]  W. D. Drotning,et al.  Optical properties of a solar-absorbing molten salt heat transfer fluid. [Eutectic mixture of KNO3, NaNO2, and NaNO3 with particle suspensions of cobalt oxides or copper oxides] , 1977 .

[111]  W. D. Drotning,et al.  Solar absorption properties of a high temperature direct-absorbing heat transfer fluid , 1977 .

[112]  G. Angelino Real Gas Effects in Carbon Dioxide Cycles , 1969 .

[113]  G. Angelino Carbon Dioxide Condensation Cycles For Power Production , 1968 .

[114]  D. M. Gruen,et al.  Fused-salt spectrophotometry , 1965 .

[115]  R. Littlewood,et al.  Electrochemical studies of the behaviour of metals in fused chlorides , 1961 .

[116]  E. S. Freeman The Kinetics of the Thermal Decomposition of Potassium Nitrate and of the Reaction between Potassium Nitrite and Oxygen1a , 1956 .