Structural and Electrical Functionality of NiO Interfacial Films in Bulk Heterojunction Organic Solar Cells

The functionality of NiO interfacial layers in enhancing bulk heterojunction (BHJ) organic photovoltaic (OPV) cell performance is investigated by integrated characterization of the electrical properties, microstructure, electronic structure, and optical properties of thin NiO films grown on glass/ITO electrodes. These NiO layers are found to be advantageous in BHJ OPV applications due to favorable energy band levels, interface passivation, p-type character, crystallinity, smooth surfaces, and optical transparency. The NiO overlayers are fabricated via pulsed-laser deposition and found to have a work function of ∼5.3 eV. They are investigated by both topographic and conductive atomic force microscopy and shown to passivate interfacial charge traps. The films also have an average optical transparency of >80% in the visible range, crucial for efficient OPV function, and have a near-stoichiometric Ni:O surface composition. By grazing-incidence X-ray diffraction, the NiO thin films are shown to grow preferenti...

[1]  S. Pizzini,et al.  Thermodynamic and Transport Properties of Stoichiometric and Nonstoichiometric Nickel Oxide , 1967 .

[2]  Pramod S. Patil,et al.  Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films , 2002 .

[3]  Mm Martijn Wienk,et al.  The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study , 2007 .

[4]  W. R. Salaneck,et al.  Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison , 2000 .

[5]  P. Dutta,et al.  Covalently bound hole-injecting nanostructures. Systematics of molecular architecture, thickness, saturation, and electron-blocking characteristics on organic light-emitting diode luminance, turn-on voltage, and quantum efficiency. , 2005, Journal of the American Chemical Society.

[6]  A. Draeseke,et al.  p-Type oxides for use in transparent diodes , 2002 .

[7]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[8]  Lars Hedin,et al.  Explicit local exchange-correlation potentials , 1971 .

[9]  C. Brabec,et al.  Formation and impact of hot spots on the performance of organic photovoltaic cells , 2009 .

[10]  Valentin D. Mihailetchi,et al.  Origin of the enhanced performance in poly"3-hexylthiophene…: †6,6‡-phenyl C 61 -butyric acid methyl ester solar cells upon slow drying of the active layer , 2006 .

[11]  Ji-heon Kim,et al.  Effect of NiOx thin layer fabricated by oxygen-plasma treatment on polymer photovoltaic cell , 2010 .

[12]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[13]  Christoph J. Brabec,et al.  Organic materials: Fantastic plastic , 2008 .

[14]  Bernard Kippelen,et al.  High-performance C60 n-channel organic field-effect transistors through optimization of interfaces , 2008 .

[15]  Christoph J. Brabec,et al.  Interface materials for organic solar cells , 2010 .

[16]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[17]  S. Hüfner,et al.  Electronic structure of NiO and related 3d-transition-metal compounds , 1994 .

[18]  M. Rusu,et al.  Role of ITO and PEDOT:PSS in stability/degradation of polymer:fullerene bulk heterojunctions solar cells , 2010 .

[19]  K. Ogura,et al.  Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films , 2004 .

[20]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[21]  N. S. Sariciftci,et al.  Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration , 2005 .

[22]  Tadatsugu Minami,et al.  Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications , 2008 .

[23]  Hiroaki Yanagida,et al.  Electrical conduction and effective mass of a hole in single-crystal NiO , 1986 .

[24]  Alex B. F. Martinson,et al.  Anode Interfacial Tuning via Electron‐Blocking/Hole‐Transport Layers and Indium Tin Oxide Surface Treatment in Bulk‐Heterojunction Organic Photovoltaic Cells , 2010 .

[25]  Gang Li,et al.  Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. , 2009, Journal of the American Chemical Society.

[26]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[27]  B. Batterman,et al.  Depth-controlled grazing-incidence diffraction of synchrotron x radiation. , 1986, Physical review letters.

[28]  Roar R. Søndergaard,et al.  Advanced materials and processes for polymer solar cell devices , 2010 .

[29]  Gang Li,et al.  Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene) , 2005 .

[30]  Christoph J. Brabec,et al.  Solution-Processed Organic Solar Cells , 2008 .

[31]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[32]  Takeshi Fukuda,et al.  High-efficiency transparent organic light-emitting diode with one thin layer of nickel oxide on a transparent anode for see-through-display application , 2007 .

[33]  S. Hüfner,et al.  The electronic structure of NiO investigated by photoemission spectroscopy , 1991 .

[34]  Sung-Hwan Han,et al.  Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes , 2006 .

[35]  J. Park,et al.  Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics , 2007 .

[36]  Mckay,et al.  Surface electronic structure of NiO: Defect states, O2 and H2O interactions. , 1985, Physical review. B, Condensed matter.

[37]  A. Zunger,et al.  Origins of the doping asymmetry in oxides : hole doping in NiO versus electron doping in ZnO , 2007 .

[38]  Wei-Bing Zhang,et al.  Stability of the polar NiO(111) surface. , 2008, The Journal of chemical physics.

[39]  Wolfgang Kowalsky,et al.  Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films , 2009 .

[40]  Yong Cao,et al.  Polymer solar cells: Recent development and possible routes for improvement in the performance , 2010 .

[41]  Xingzhong Zhao,et al.  Bulk heterojunction solar cells with NiO hole transporting layer based on AZO anode , 2010 .

[42]  B. Servet,et al.  Stability/instability of conductivity and work function changes of ITO thin films, UV-irradiated in air or vacuum: Measurements by the four-probe method and by Kelvin force microscopy , 2001 .

[43]  R. Hatton,et al.  Increased efficiency of small molecule photovoltaic cells by insertion of a MoO3 hole-extracting layer , 2010 .

[44]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[45]  T. Chikyow,et al.  Interface engineering for molecular alignment and device performance of quaterrylene thin films , 2008 .

[46]  Do-Young Kim,et al.  The effect of molybdenum oxide interlayer on organic photovoltaic cells , 2009 .

[47]  S. Jenekhe,et al.  Bulk Heterojunction Solar Cells from Poly(3-butylthiophene)/Fullerene Blends: In Situ Self-Assembly of Nanowires, Morphology, Charge Transport, and Photovoltaic Properties , 2008 .

[48]  Martijn Lenes,et al.  Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years) , 2008 .

[49]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[50]  Hong Ma,et al.  High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer , 2008 .

[51]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[52]  Christoph J. Brabec,et al.  Bipolar Charge Transport in PCPDTBT‐PCBM Bulk‐Heterojunctions for Photovoltaic Applications , 2008 .

[53]  Thuc‐Quyen Nguyen,et al.  Nanoscale Charge Transport and Internal Structure of Bulk Heterojunction Conjugated Polymer/Fullerene Solar Cells by Scanning Probe Microscopy , 2008 .

[54]  W. Eccleston,et al.  Mater. Res. Soc. Symp. Proc. , 2006 .

[55]  Yun-Hi Kim,et al.  Highly efficient organic light-emitting diodes fabricated utilizing nickel-oxide buffer layers between the anodes and the hole transport layers , 2007 .

[56]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[57]  Mark A Ratner,et al.  Vapor phase self-assembly of molecular gate dielectrics for thin film transistors. , 2008, Journal of the American Chemical Society.

[58]  Benjamin J. Leever,et al.  Consequences of anode interfacial layer deletion. HCl-treated ITO in P3HT:PCBM-based bulk-heterojunction organic photovoltaic devices. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[59]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[60]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[61]  O. Morton Solar energy: A new day dawning?: Silicon Valley sunrise , 2006, Nature.

[62]  R. Annan Photovoltaics. , 1985, Science.

[63]  Ghassan E. Jabbour,et al.  Organic-Based Photovoltaics: Toward Low-Cost Power Generation , 2005 .

[64]  J. R. Patel,et al.  X-Ray Evanescent-Wave Absorption and Emission , 1983 .

[65]  D. Milliron,et al.  Surface oxidation activates indium tin oxide for hole injection , 2000 .

[66]  Fabrication of nickel oxide and Ni-doped indium tin oxide thin films using pyrosol process , 2006 .

[67]  R. Österbacka,et al.  Roll-to-Roll Fabrication of Bulk Heterojunction Plastic Solar Cells using the Reverse Gravure Coating Technique , 2008 .

[68]  Tobin J Marks,et al.  Molecularly "engineered" anode adsorbates for probing OLED interfacial structure-charge injection/luminance relationships: large, structure-dependent effects. , 2003, Journal of the American Chemical Society.

[69]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[70]  Tobin J Marks,et al.  High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. , 2005, Journal of the American Chemical Society.

[71]  Stelios A. Choulis,et al.  Thermal degradation mechanisms of PEDOT:PSS , 2009 .

[72]  M. Liberatore,et al.  Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells , 2009 .

[73]  Raj René Janssen,et al.  Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction , 2005, SPIE Optics + Photonics.

[74]  Auke Meetsma,et al.  Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM 'plastic' solar cells. , 2003, Chemical communications.

[75]  Erich Wimmer,et al.  Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O 2 molecule , 1981 .

[76]  Garry Rumbles,et al.  Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition , 2008 .

[77]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[78]  Yang Yang,et al.  Interface investigation and engineering – achieving high performance polymer photovoltaic devices , 2010 .

[79]  Hideo Hosono,et al.  UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO , 2003 .

[80]  Alex K.-Y. Jen,et al.  Interface Engineering for Organic Electronics , 2010, Advanced Functional Materials.

[81]  A. Heeger,et al.  Nanostructure of the Interpenetrating Networks in Poly(3‐hexylthiophene)/fullerene Bulk Heterojunction Materials: Implications for Charge Transport , 2007 .

[82]  Franklin Chau-Nan Hong,et al.  Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode , 2002 .

[83]  C. Brabec,et al.  Monitoring the Channel Formation in Organic Field‐Effect Transistors via Photoinduced Charge Transfer , 2009 .

[84]  Benjamin J. Leever,et al.  Spatially resolved photocurrent mapping of operating organic photovoltaic devices using atomic force photovoltaic microscopy , 2008 .

[85]  D. Ginley,et al.  Solution deposited NiO thin-films as hole transport layers in organic photovoltaics , 2010 .

[86]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[87]  Yang Yang,et al.  Energy level alignment of poly(3-hexylthiophene): [6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction , 2009 .

[88]  M. Kemerink,et al.  Three-dimensional inhomogeneities in PEDOT:PSS Films , 2004 .

[89]  M. Wasielewski,et al.  Designed Bithiophene-Based Interfacial Layer for High-Efficiency Bulk-Heterojunction Organic Photovoltaic Cells. Importance of Interfacial Energy Level Matching , 2010 .

[90]  Mark A. Ratner,et al.  Practical efficiency limits in organic photovoltaic cells: Functional dependence of fill factor and external quantum efficiency , 2009 .

[91]  P. Heremans,et al.  Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. , 2009, Accounts of chemical research.

[92]  T. Marks,et al.  High-efficiency hole extraction/electron-blocking layer to replace poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) in bulk-heterojunction polymer solar cells , 2008 .

[93]  Brian A. Gregg,et al.  Organic and nano-structured composite photovoltaics: An overview , 2005 .

[94]  A. Bard,et al.  Semiconductor Electrodes: X . Photoelectrochemical Behavior of Several Polycrystalline Metal Oxide Electrodes in Aqueous Solutions , 1977 .

[95]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[96]  J. Martorell,et al.  Sputtered NiO as electron blocking layer in P3HT:PCBM solar cells fabricated in ambient air , 2011 .

[97]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[98]  G. North Character , 1906, The American journal of dental science.

[99]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[100]  M. Powalla,et al.  Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells , 2007 .

[101]  T. Marks,et al.  MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes. , 2005, Journal of the American Chemical Society.

[102]  Mark A. Ratner,et al.  Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance , 2010 .

[103]  R. Gordon Criteria for Choosing Transparent Conductors , 2000 .

[104]  X. Hao,et al.  Electronic density tailing outside π-conjugated polymer surface , 2006 .

[105]  N. S. Sariciftci,et al.  A review of charge transport and recombination in polymer/fullerene organic solar cells , 2007 .

[106]  André Moliton,et al.  How to model the behaviour of organic photovoltaic cells , 2006 .

[107]  Jorge O. Sofo,et al.  Linear optical properties of solids within the full-potential linearized augmented planewave method , 2004, Comput. Phys. Commun..

[108]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[109]  J. Bisquert,et al.  Band unpinning and photovoltaic model for P3HT:PCBM organic bulk heterojunctions under illumination , 2008 .

[110]  Arthur J Freeman,et al.  Total-energy full-potential linearized augmented-plane-wave method for bulk solids: Electronic and structural properties of tungsten , 1984 .