Integrated Structural Analysis of the Human Nuclear Pore Complex Scaffold

[1]  R. Milligan,et al.  A large particle associated with the perimeter of the nuclear pore complex , 1982, The Journal of cell biology.

[2]  C. Akey,et al.  Interactions and structure of the nuclear pore complex revealed by cryo- electron microscopy , 1989, The Journal of cell biology.

[3]  E. Buhle,et al.  Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components , 1990, The Journal of cell biology.

[4]  M. Goldberg,et al.  The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. , 1993, Journal of cell science.

[5]  AC Tose Cell , 1993, Cell.

[6]  M. Radermacher,et al.  Architecture of the Xenopus nuclear pore complex revealed by three- dimensional cryo-electron microscopy , 1993, The Journal of cell biology.

[7]  C. Akey Structural plasticity of the nuclear pore complex. , 1995, Journal of molecular biology.

[8]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[9]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[10]  B. Chait,et al.  The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism , 2000 .

[11]  W. Fischer,et al.  Identification of a new vertebrate nucleoporin, Nup188, with the use of a novel organelle trap assay. , 2000, Molecular biology of the cell.

[12]  N. Pante,et al.  Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. , 2002, Molecular biology of the cell.

[13]  R. Milligan,et al.  Nuclear pore complexes exceeding eightfold rotational symmetry. , 2003, Journal of structural biology.

[14]  F. Förster,et al.  Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography , 2004, Science.

[15]  B. Chait,et al.  Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture , 2004, PLoS biology.

[16]  Rafael A. Irizarry,et al.  A Model-Based Background Adjustment for Oligonucleotide Expression Arrays , 2004 .

[17]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[18]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[19]  G. Blobel,et al.  Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex , 2004, The Journal of cell biology.

[20]  J. Ellenberg,et al.  The entire Nup107-160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. , 2004, Molecular biology of the cell.

[21]  J. Thyberg,et al.  Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. , 2004, Molecular biology of the cell.

[22]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[23]  Gordon K. Smyth,et al.  Use of within-array replicate spots for assessing differential expression in microarray experiments , 2005, Bioinform..

[24]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[25]  T. Schwartz Modularity within the architecture of the nuclear pore complex. , 2005, Current opinion in structural biology.

[26]  F. Förster,et al.  Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Köser,et al.  Nucleoporin domain topology is linked to the transport status of the nuclear pore complex. , 2005, Journal of molecular biology.

[28]  S. Stagg,et al.  Structure of the Sec13/31 COPII coat cage , 2006, Nature.

[29]  Wolfram Antonin,et al.  The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. , 2006, Molecular cell.

[30]  S. Briggs,et al.  ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division , 2006, Proceedings of the National Academy of Sciences.

[31]  G. Blobel,et al.  Cell-cycle-dependent phosphorylation of the nuclear pore Nup107–160 subcomplex , 2007, Proceedings of the National Academy of Sciences.

[32]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[33]  S. Jeudy,et al.  Crystal Structure of Nucleoporin Nic96 Reveals a Novel, Intricate Helical Domain Architecture* , 2007, Journal of Biological Chemistry.

[34]  B. Chait,et al.  The molecular architecture of the nuclear pore complex , 2007, Nature.

[35]  G. Blobel,et al.  Architecture of a Coat for the Nuclear Pore Membrane , 2007, Cell.

[36]  Kyrill Schwarz-Herion,et al.  Domain topology of the p62 complex within the 3-D architecture of the nuclear pore complex. , 2007, Journal of molecular biology.

[37]  Friedrich Förster,et al.  Snapshots of nuclear pore complexes in action captured by cryo-electron tomography , 2007, Nature.

[38]  Eric D. Spear,et al.  Structural Evidence for Common Ancestry of the Nuclear Pore Complex and Vesicle Coats , 2008, Science.

[39]  Bradley Efron,et al.  Microarrays, Empirical Bayes and the Two-Groups Model. Rejoinder. , 2008, 0808.0572.

[40]  G. Blobel,et al.  A fence-like coat for the nuclear pore membrane. , 2008, Molecular cell.

[41]  S. Jeudy,et al.  Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. , 2008, Molecular cell.

[42]  Korbinian Strimmer,et al.  fdrtool: a versatile R package for estimating local and tail area-based false discovery rates , 2008, Bioinform..

[43]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[44]  Martin Kampmann,et al.  Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex , 2009, Nature Structural &Molecular Biology.

[45]  G. Blobel,et al.  Structure of a trimeric nucleoporin complex reveals alternate oligomerization states , 2009, Proceedings of the National Academy of Sciences.

[46]  T. Schwartz,et al.  Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice , 2009, Nature Structural &Molecular Biology.

[47]  G. Blobel,et al.  Structural and functional analysis of Nup120 suggests ring formation of the Nup84 complex , 2009, Proceedings of the National Academy of Sciences.

[48]  Ulrike Kutay,et al.  Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2 , 2009, The Journal of cell biology.

[49]  J. Whittle,et al.  Architectural Nucleoporins Nup157/170 and Nup133 Are Structurally Related and Descend from a Second Ancestral Element* , 2009, The Journal of Biological Chemistry.

[50]  U. Kutay,et al.  Orchestrating nuclear envelope disassembly and reassembly during mitosis , 2009, Nature Reviews Molecular Cell Biology.

[51]  U. Kutay,et al.  Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane , 2010, The Journal of cell biology.

[52]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[53]  B. Böttcher,et al.  Precise mapping of subunits in multiprotein complexes by a versatile electron microscopy label , 2010, Nature Structural &Molecular Biology.

[54]  J. Ellenberg,et al.  Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase , 2010, The Journal of cell biology.

[55]  M. Hetzer,et al.  POM121 and Sun1 play a role in early steps of interphase NPC assembly , 2011, The Journal of cell biology.

[56]  S. Simon,et al.  Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy , 2011, Nature Structural &Molecular Biology.

[57]  U. Kutay,et al.  Traversing the NPC along the pore membrane , 2011, Nucleus.

[58]  André Hoelz,et al.  The structure of the nuclear pore complex. , 2011, Annual review of biochemistry.

[59]  Peer Bork,et al.  Insight into Structure and Assembly of the Nuclear Pore Complex by Utilizing the Genome of a Eukaryotic Thermophile , 2011, Cell.

[60]  Ruedi Aebersold,et al.  Phosphorylation of Nup98 by Multiple Kinases Is Crucial for NPC Disassembly during Mitotic Entry , 2011, Cell.

[61]  Sozanne R. Solmaz,et al.  Molecular Architecture of the Transport Channel of the Nuclear Pore Complex , 2011, Cell.

[62]  José-Jesús Fernández,et al.  Fast tomographic reconstruction on multicore computers , 2011, Bioinform..

[63]  Michele Magrane,et al.  UniProt Knowledgebase: a hub of integrated protein data , 2011, Database J. Biol. Databases Curation.

[64]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[65]  P. Sengupta,et al.  The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis , 2011, Development.

[66]  Friedrich Förster,et al.  False discovery rate estimation for cross-linked peptides identified by mass spectrometry , 2012, Nature Methods.

[67]  Josef D. Franke,et al.  Structure–function mapping of a heptameric module in the nuclear pore complex , 2012, The Journal of cell biology.

[68]  O. Medalia,et al.  The human nuclear pore complex as revealed by cryo-electron tomography. , 2012, Structure.

[69]  Wolfram Antonin,et al.  The C-terminal domain of Nup93 is essential for assembly of the structural backbone of nuclear pore complexes , 2012, Molecular biology of the cell.

[70]  T. Schwartz,et al.  Molecular basis for Nup37 and ELY5/ELYS recruitment to the nuclear pore complex , 2012, Proceedings of the National Academy of Sciences.

[71]  Bernd Rieger,et al.  Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution , 2012, Journal of Cell Science.

[72]  R. Aebersold,et al.  Structural Probing of a Protein Phosphatase 2A Network by Chemical Cross-Linking and Mass Spectrometry , 2012, Science.

[73]  E. Hurt,et al.  Analysis of the yeast nucleoporin Nup188 reveals a conserved S-like structure with similarity to karyopherins. , 2012, Journal of structural biology.

[74]  G. Blobel,et al.  Structural evolution of the membrane-coating module of the nuclear pore complex , 2012, Proceedings of the National Academy of Sciences.

[75]  R. Aebersold,et al.  Expanding the Chemical Cross-Linking Toolbox by the Use of Multiple Proteases and Enrichment by Size Exclusion Chromatography , 2012, Molecular & Cellular Proteomics.

[76]  Anna Tramontano,et al.  MODexplorer: an integrated tool for exploring protein sequence, structure and function relationships , 2013, Bioinform..

[77]  T. Schwartz,et al.  Structural and functional studies of the 252 kDa nucleoporin ELYS reveal distinct roles for its three tethered domains. , 2013, Structure.

[78]  P. Bork,et al.  Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines , 2013, Molecular systems biology.

[79]  T. Schwartz,et al.  Scaffold nucleoporins Nup188 and Nup192 share structural and functional properties with nuclear transport receptors , 2013, eLife.

[80]  M. Beck,et al.  Protein interfaces of the conserved Nup84 complex from Chaetomium thermophilum shown by crosslinking mass spectrometry and electron microscopy. , 2013, Structure.

[81]  N. Daigle,et al.  Nuclear Pore Scaffold Structure Analyzed by Super-Resolution Microscopy and Particle Averaging , 2013, Science.

[82]  R. L. Adams,et al.  Uncovering Nuclear Pore Complexity with Innovation , 2013, Cell.

[83]  I. Szleifer,et al.  Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex , 2013, Proceedings of the National Academy of Sciences.