Two Higgs doublets and a complex singlet: disentangling the decay topologies and associated phenomenology

A bstractWe present a systematic study of an extension of the Standard Model (SM) with two Higgs doublets and one complex singlet (2HDM+S). In order to gain analytical understanding of the parameter space, we re-parameterize the 27 parameters in the Lagrangian by quantities more closely related to physical observables: physical masses, mixing angles, trilinear and quadratic couplings, and vacuum expectation values. Embedding the 125 GeV SM-like Higgs boson observed at the LHC places stringent constraints on the parameter space. In particular, the mixing of the SM-like interaction state with the remaining states is severely constrained, requiring approximate alignment without decoupling in the region of parameter space where the additional Higgs bosons are light enough to be accessible at the LHC. In contrast to 2HDM models, large branching ratios of the heavy Higgs bosons into two lighter Higgs bosons or a light Higgs and a Z boson, so-called Higgs cascade decays, are ubiquitous in the 2HDM+S. Using currently available limits, future projections, and our own collider simulations, we show that combining different final states arising from Higgs cascades would allow to probe most of the interesting region of parameter space with Higgs boson masses up to 1 TeV at the LHC with L = 3000 fb−1 of data.

[1]  Xiaofang Han,et al.  Wrong sign Yukawa coupling of the 2HDM with a singlet scalar as dark matter confronted with dark matter and Higgs data , 2017, 1708.06882.

[2]  S. Willenbrock,et al.  Higgs decay to top quarks at hadron colliders , 1994 .

[3]  S. M. Etesami,et al.  Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search , 2017 .

[4]  Howard Georgi,et al.  Suppression of Flavor Changing Effects From Neutral Spinless Meson Exchange in Gauge Theories , 1979 .

[5]  S. Moretti,et al.  Collider bounds on 2-Higgs doublet models with U(1) gauge symmetries , 2018, Physics Letters B.

[6]  J. Gunion,et al.  Errata for the Higgs hunter's guide , 1993, hep-ph/9302272.

[7]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[8]  Howard E. Haber,et al.  Alignment limit of the NMSSM Higgs sector , 2015, 1510.09137.

[9]  J. Adelman,et al.  Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at √s = 13 TeV with the ATLAS detector , 2016 .

[10]  Apostolos Pilaftsis,et al.  Erratum to: Maximally symmetric two Higgs doublet model with natural standard model alignment , 2014 .

[11]  D. Whiteson,et al.  Mono-Higgs-boson: A new collider probe of dark matter , 2013, 1312.2592.

[12]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[13]  V. M. Ghete,et al.  Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at $\sqrt{s} = $ 13 TeV , 2018 .

[14]  U. Ellwanger,et al.  Simultaneous search for extra light and heavy Higgs bosons via cascade decays , 2017, Journal of High Energy Physics.

[15]  A. Petrov,et al.  Searching for dark matter at LHC with Mono-Higgs production , 2013, 1311.1511.

[16]  Lian-tao Wang,et al.  Mono-Higgs detection of dark matter at the LHC , 2014, 1402.7074.

[17]  M. N. Rebelo,et al.  Theory and phenomenology of two-Higgs-doublet models , 2011, 1106.0034.

[18]  E Banas,et al.  Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in pp Collisions at sqrt[s]=8 TeV with the ATLAS Detector. , 2015, Physical review letters.

[19]  K. Kainulainen,et al.  Electroweak baryogenesis and dark matter from a singlet Higgs , 2012, 1210.4196.

[20]  Silva,et al.  Fundamental CP-violating quantities in an SU(2) , 1994, Physical review. D, Particles and fields.

[21]  M. Maniatis,et al.  The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed , 2009, 0906.0777.

[22]  A. S. Mete,et al.  Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at s=13 TeV with the ATLAS detector , 2017 .

[23]  Margarete Mühlleitner,et al.  Singlet extensions of the standard model at LHC Run 2: benchmarks and comparison with the NMSSM , 2015, 1512.05355.

[24]  G. R. Lee,et al.  A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector , 2018 .

[25]  M. P. Casado,et al.  Search for heavy ZZ resonances in the ℓ ⁺ℓ ⁻ℓ ⁺ℓ⁻ and ℓ ⁺ℓ ⁻νν̄ final states using proton–proton collisions at √s̅= 13 TeV with the ATLAS detector , 2018 .

[26]  M. Mühlleitner,et al.  Discovery prospects for NMSSM Higgs bosons at the high-energy Large Hadron Collider , 2014, 1408.1120.

[27]  J. Gunion,et al.  Extending two-Higgs-doublet models by a singlet scalar field — The case for dark matter , 2014, 1408.2106.

[28]  J. Gunion,et al.  Scrutinizing the alignment limit in two-Higgs-doublet models: m h = 125 GeV , 2015, 1507.00933.

[29]  V. M. Ghete,et al.  Search for excited leptons in ℓℓγ final states in proton-proton collisions at s=13$$ \sqrt{\mathrm{s}}=13 $$ TeV , 2018 .

[30]  Yi-Fu Cai,et al.  Singlet dark matter in a type II two Higgs doublet model , 2013, 1308.5346.

[31]  Sunghoon Jung,et al.  Dip or nothingness of a Higgs resonance from the interference with a complex phase , 2015, 1505.00291.

[32]  M. Muhlleitner,et al.  High scale impact in alignment and decoupling in two-Higgs-doublet models , 2017, 1710.10410.

[33]  G. Chalons,et al.  Analysis of the Higgs potentials for two doublets and a singlet , 2012, 1209.6235.

[34]  Marco O. P. Sampaio,et al.  Phenomenological comparison of models with extended Higgs sectors , 2017, Journal of High Energy Physics.

[35]  Roberto Barcelo,et al.  Extra Higgs bosons in tt production at the LHC , 2010, 1001.5456.

[36]  Qiang Li,et al.  Probing the dark sector through mono-Z boson leptonic decays , 2017, Journal of High Energy Physics.

[37]  Stefania Gori,et al.  Closing the Wedge: Search Strategies for Extended Higgs Sectors with Heavy Flavor Final States , 2016, 1602.02782.

[38]  J. H. M. D. Oca,et al.  Singlet scalar Dark Matter in Dark Two Higgs Doublet Model , 2014, 1410.5462.

[39]  J. Gunion,et al.  The Higgs Hunter's Guide , 1990 .

[40]  C. Collaboration,et al.  Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at s=13TeV , 2018, Physics Letters B.

[41]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[42]  H. Schulz,et al.  Higgs coupling measurements at the LHC , 2015, 1511.05170.

[43]  Xiaofang Han,et al.  Light scalar dark matter extension of the type-II two-Higgs-doublet model , 2018, Physical Review D.

[44]  M. Carena,et al.  Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM , 2017, Journal of High Energy Physics.

[45]  C. Calancha,et al.  ILC Higgs White Paper , 2013, 1310.0763.

[46]  Silva,et al.  Jarlskog-like invariants for theories with scalars and fermions. , 1995, Physical review. D, Particles and fields.

[47]  Howard E. Haber,et al.  Complementarity between nonstandard Higgs boson searches and precision Higgs boson measurements in the MSSM , 2014, 1410.4969.

[48]  John F. Donoghue,et al.  Properties of charged Higgs bosons , 1979 .

[49]  D. Whiteson,et al.  Collider searches for dark matter in events with a Z boson and missing energy , 2012, 1212.3352.

[50]  M. Lindner,et al.  Neutrino masses and absence of flavor changing interactions in the 2HDM from gauge principles , 2017, 1705.05388.

[51]  A. Randle-conde,et al.  Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV , 2016 .

[52]  V. M. Ghete,et al.  Search for dark matter and unparticles produced in association with a Z boson in proton-proton collisions at √s=8 TeV , 2016 .

[53]  S. M. Etesami,et al.  Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at s=13$$ \sqrt{s}=13 $$ TeV , 2017 .

[54]  Paul Langacker,et al.  Complex Singlet Extension of the Standard Model , 2008, 0811.0393.

[55]  Khachatryan,et al.  Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons , 2016 .

[56]  M. Sher,et al.  Next-to-minimal two Higgs Doublet Model , 2013, 1312.3949.

[57]  Searches for $ \Lambda_b^0 $ and $ \Xi_b^0 $ decays to $ K_{\mathrm{S}}^0p{\pi^{-}} $ and $ K_{\mathrm{S}}^0p{K^{-}} $ final states with first observation of the $ \Lambda_b^0\to K_{\mathrm{S}}^0p{\pi^{-}} $ decay , 2014, 1402.0770.

[58]  Vernon Barger,et al.  Azimuthal Correlations in Top Pair Decays and The Effects of New Heavy Scalars , 2011, 1112.5173.

[59]  Howard E. Haber,et al.  The CP-conserving two-Higgs-doublet model: the approach to the decoupling limit , 2003 .

[60]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[61]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[62]  Gabe Shaughnessy,et al.  Singlet Higgs phenomenology and the electroweak phase transition , 2007, 0705.2425.

[63]  Cms Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV , 2016 .

[64]  L. Basso Resonant mono Higgs at the LHC , 2015, 1512.06381.

[65]  G. Montagna,et al.  Higgs Boson production in , 1995, hep-ph/9501267.

[66]  J. No,et al.  Looking through the pseudoscalar portal into dark matter: Novel mono-Higgs and mono-Z signatures at the LHC , 2015, 1509.01110.

[67]  J. Jia TeV with the ATLAS Detector , 2013 .

[68]  Lukasz Zwalinski,et al.  Search for pair production of Higgs bosons in the b b b b final state using proton-proton collisions at s =13 TeV with the ATLAS detector SEARCH for PAIR PRODUCTION of HIGGS BOSONS in ⋯ M. AABOUD et al. , 2016 .

[69]  L. Krauss,et al.  Searching for Dark Matter at the LHC with a Mono-Z , 2012, 1209.0231.

[70]  Yi Wang,et al.  Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at √s=13 TeV , 2018 .

[71]  W. Keung,et al.  Can vanishing mass-on-shell interactions generate a dip at colliders? , 2015 .

[72]  D. Kar,et al.  Phenomenological signatures of additional scalar bosons at the LHC , 2016, 1606.01674.

[73]  A. Cherchiglia,et al.  Muon g−2 in the 2HDM: Maximum results and detailed phenomenology , 2017, Physical Review D.

[74]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[75]  J. T. Childers,et al.  Combined Measurement of the Higgs Boson Mass in $pp$ Collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS and CMS Experiments , 2015, 1503.07589.

[76]  Cyril Hugonie,et al.  The Next-to-Minimal Supersymmetric Standard Model , 2009, 0910.1785.

[77]  Ian Low,et al.  Impersonating the Standard Model Higgs boson: alignment without decoupling , 2013, 1310.2248.

[78]  V. M. Ghete,et al.  Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at s=13$$ \sqrt{s}=13 $$ TeV , 2017, 1706.09936.

[79]  G. R. Lee,et al.  Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a $Z$ boson in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector , 2017, 1708.09624.

[80]  J. Abdallah,et al.  Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in pp Collisions at √s = 8 TeV with the ATLAS Detector , 2015 .

[81]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[82]  X. Ruan,et al.  Multi-lepton signatures of additional scalar bosons beyond the Standard Model at the LHC , 2017, Journal of Physics G: Nuclear and Particle Physics.

[83]  A. S. Mete,et al.  Search for new phenomena in high-mass diphoton final states using 37 fb−1 of proton–proton collisions collected at s=13 TeV with the ATLAS detector , 2017, 1707.04147.

[84]  F. Staub,et al.  The ultraviolet landscape of two-Higgs doublet models , 2018, The European Physical Journal C.

[85]  Scott Thomas,et al.  The hunt for the rest of the Higgs bosons , 2015, Journal of High Energy Physics.

[86]  K. Freese,et al.  NMSSM Higgs boson search strategies at the LHC and the mono-Higgs signature in particular , 2017, 1703.07800.

[87]  Bruce Yabsley,et al.  Search for the standard model Higgs boson produced in association with top quarks and decaying into a bb¯ pair in pp collisions at √s=13 TeV with the ATLAS detector , 2018 .

[88]  Bruce Yabsley,et al.  Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in pp collisions at √s = 8 TeV with the ATLAS detector , 2016 .

[89]  F. Kahlhoefer,et al.  Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators , 2017, Journal of High Energy Physics.

[90]  Felix Yu,et al.  Indirect probes of the MSSM after the Higgs discovery , 2012, 1211.1976.

[91]  V. M. Ghete,et al.  Search for associated production of dark matter witha Higgs boson decaying to or at s = 13 TeV , 2017 .

[92]  L. F. Chaparro Sierra,et al.  Observation of tt[over ¯]H Production. , 2018, Physical review letters.

[93]  S. Khalil,et al.  Search for Mono-Higgs signals at the LHC in the B-L supersymmetric standard model , 2016, 1608.07500.

[94]  S. M. Etesami,et al.  Search for Resonant Production of High-Mass Photon Pairs in Proton-Proton Collisions at sqrt[s]=8 and 13 TeV. , 2016, Physical review letters.

[95]  A. S. Mete,et al.  Search for dark matter in association with a Higgs boson decaying to two photons at s=13 TeV with the ATLAS detector , 2017 .

[96]  P. D. Luckey,et al.  Search for high-mass diphoton resonances in proton–proton collisions at 13 TeV and combination with 8 TeV search , 2017 .

[97]  D. Graudenz,et al.  MSSM Higgs Boson Production at the LHC , 1997, hep-ph/9703355.

[98]  S. Gkaitatzis,et al.  Search for pair production of Higgs bosons in the b (cid:22) bb (cid:22) b (cid:12)nal state using proton-proton collisions at p s = 13 TeV with the ATLAS detector , 2016 .

[99]  Seng Pei Liew,et al.  Mono-X versus direct searches: simplified models for dark matter at the LHC , 2016, 1612.00219.

[100]  U. Ellwanger,et al.  Discovery prospects of a light scalar in the NMSSM , 2015, 1512.04281.

[101]  Zhen Liu,et al.  Challenges and opportunities for heavy scalar searches in the tt¯$$ t\overline{t} $$ channel at the LHC , 2016, 1608.07282.

[102]  Marco O. P. Sampaio,et al.  The N2HDM under theoretical and experimental scrutiny , 2016, 1612.01309.