Yaglom limit for stochastic fluid models

Abstract In this paper we analyse the limiting conditional distribution (Yaglom limit) for stochastic fluid models (SFMs), a key class of models in the theory of matrix-analytic methods. So far, only transient and stationary analyses of SFMs have been considered in the literature. The limiting conditional distribution gives useful insights into what happens when the process has been evolving for a long time, given that its busy period has not ended yet. We derive expressions for the Yaglom limit in terms of the singularity˜$s^*$ such that the key matrix of the SFM, ${\boldsymbol{\Psi}}(s)$, is finite (exists) for all $s\geq s^*$ and infinite for $s<s^*$. We show the uniqueness of the Yaglom limit and illustrate the application of the theory with simple examples.

[1]  Vaidyanathan Ramaswami,et al.  Matrix analytic methods for stochastic fluid flows , 1999 .

[2]  Lokenath Debnath,et al.  Introduction to the Theory and Application of the Laplace Transformation , 1974, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  Vaidyanathan Ramaswami,et al.  Fluid Flow Models and Queues—A Connection by Stochastic Coupling , 2003 .

[4]  Vaidyanathan Ramaswami,et al.  Transient Analysis of Fluid Models via Elementary Level-Crossing Arguments , 2006 .

[5]  Vaidyanathan Ramaswami,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 1999, ASA-SIAM Series on Statistics and Applied Mathematics.

[6]  Masakiyo Miyazawa,et al.  Tail asymptotics for a Lévy-driven tandem queue with an intermediate input , 2009, Queueing Syst. Theory Appl..

[7]  E. K. Kyprianou On the quasi-stationary distribution of the virtual waiting time in queues with Poisson arrivals , 1971 .

[8]  Nigel G. Bean,et al.  Hitting probabilities and hitting times for stochastic fluid flows , 2005 .

[9]  P. Ferrari,et al.  Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case , 2012, 1206.6114.

[10]  R. Bhatia,et al.  How and Why to Solve the Operator Equation AX−XB = Y , 1997 .

[11]  V. Ramaswami,et al.  Efficient algorithms for transient analysis of stochastic fluid flow models , 2005, Journal of Applied Probability.

[12]  Bénédicte Haas,et al.  Quasi-stationary distributions and Yaglom limits of self-similar Markov processes , 2011, 1110.4795.

[13]  P. Taylor,et al.  ALGORITHMS FOR RETURN PROBABILITIES FOR STOCHASTIC FLUID FLOWS , 2005 .

[14]  A. Lambert Quasi-Stationary Distributions and the Continuous-State Branching Process Conditioned to Be Never Extinct , 2007 .

[15]  Nigel G. Bean,et al.  Algorithms for the Laplace–Stieltjes Transforms of First Return Times for Stochastic Fluid Flows , 2008 .

[16]  P. Taylor,et al.  The quasistationary distributions of level-independent quasi-birth-and-death processes , 1998 .

[17]  Vaidyanathan Ramaswami,et al.  Transient Analysis of Fluid Flow Models via Stochastic Coupling to a Queue , 2004 .

[18]  E. V. Doorn,et al.  Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes , 1991 .

[19]  E. Seneta,et al.  On Quasi-Stationary distributions in absorbing discrete-time finite Markov chains , 1965, Journal of Applied Probability.

[20]  V Ramaswami Matrix Analytic Methods: A Tutorial Overview with Some Extensions and New Results , 1996 .

[21]  Qi-Ming He,et al.  Fundamentals of Matrix-Analytic Methods , 2013, Springer New York.

[22]  Servet Martínez,et al.  EXISTENCE OF QUASI-STATIONARY DISTRIBUTIONS. A RENEWAL DYNAMICAL APPROACH , 1995 .

[23]  Z. Palmowski,et al.  Quasi-stationary workload in a Lévy-driven storage system , 2010, 1012.2664.

[24]  Donald L. Iglehart RANDOM WALKS WITH NEGATIVE DRIFT CONDITIONED TO STAY POSITIVE , 1974 .

[25]  Malgorzata M. O'Reilly,et al.  Spatially-coherent uniformization of a stochastic fluid model to a Quasi-Birth-and-Death process , 2013, Perform. Evaluation.

[26]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[27]  Pablo A. Ferrari,et al.  Quasi Stationary Distributions and Fleming-Viot Processes in Countable Spaces , 2007 .

[28]  Shoumei Li,et al.  Quasi-stationarity and quasi-ergodicity of general Markov processes , 2014 .

[29]  G. O. Roberts,et al.  Weak convergence of conditioned processes on a countable state space , 1995, Journal of Applied Probability.

[30]  N. G. Bean,et al.  Quasistationary distributions for level-dependent quasi-birth-and-death processes , 2000 .

[31]  Nigel G. Bean,et al.  The stochastic fluid–fluid model: A stochastic fluid model driven by an uncountable-state process, which is a stochastic fluid model itself ☆ , 2014 .

[32]  Chun-Hua Guo,et al.  Nonsymmetric Algebraic Riccati Equations and Wiener-Hopf Factorization for M-Matrices , 2001, SIAM J. Matrix Anal. Appl..

[33]  Malgorzata M. O'Reilly,et al.  A stochastic fluid model driven by an uncountable-state process, which is a stochastic fluid model itself: the stochastic fluid-fluid model , 2012, PERV.

[34]  Z. Palmowski,et al.  Yaglom limit for stable processes in cones , 2016, 1612.03548.

[35]  Philip K. Pollett,et al.  Quasi-stationary Distributions : A Bibliography , 2000 .

[36]  Z. Palmowski,et al.  Quasi-stationary distributions for Lévy processes , 2006 .

[37]  M. K. Kerimov,et al.  Applied and computational complex analysis. Vol. 1. Power series, integration, conformal mapping, location of zeros: Henrici P. xv + 682 pp., John Wiley and Sons, Inc., New York — London, 1974☆ , 1977 .

[38]  Alan J. Laub,et al.  Matrix analysis - for scientists and engineers , 2004 .

[39]  Ward Whitt,et al.  Asymptotics for M/G/1 low-priority waiting-time tail probabilities , 1997, Queueing Syst. Theory Appl..

[40]  S. Asmussen Stationary distributions for fluid flow models with or without Brownian noise , 1995 .

[41]  Mark S. Squillante,et al.  Matrix-Analytic Methods in Stochastic Models, Seventh International Conference on Matrix Analytic Methods in Stochastic Models, MAM 2011, Columbia University, New York, NY, USA, 13-16 June 2011 , 2013, MAM.

[42]  Pierre Collet,et al.  Quasi-stationary distributions , 2011 .

[43]  Nigel G. Bean,et al.  The quasi-stationary behavior of quasi-birth-and-death processes , 1997 .

[44]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[45]  Richard L. Tweedie,et al.  Quasi-stationary distributions for Markov chains on a general state space , 1974, Journal of Applied Probability.

[46]  D. McDonald,et al.  Yaglom limits can depend on the starting state , 2017, Advances in Applied Probability.

[47]  E. A. van Doorn Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes , 1991, Advances in Applied Probability.

[48]  E. Seneta,et al.  On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states , 1966 .

[49]  Servet Martínez,et al.  Quasi-stationary distributions for a Brownian motion with drift and associated limit laws , 1994, Journal of Applied Probability.

[50]  D. Mitra,et al.  Stochastic theory of a data-handling system with multiple sources , 1982, The Bell System Technical Journal.