Multinomial probit with structured covariance for route choice behavior

[1]  D. S. Bunch,et al.  Estimability in the Multinomial Probit Model , 1989 .

[2]  J. Horowitz,et al.  An Investigation of the Accuracy of the Clark Approximation for the Multinomial Probit Model , 1982 .

[3]  C. Daganzo,et al.  Multinomial Probit and Qualitative Choice: A Computationally Efficient Algorithm , 1977 .

[4]  C. Manski,et al.  On the Use of Simulated Frequencies to Approximate Choice Probabilities , 1981 .

[5]  C. Daganzo,et al.  Multinomial Probit with Time-Series Data: Unifying State Dependence and Serial Correlation Models , 1982 .

[6]  J. Geweke,et al.  Alternative computational approaches to inference in the multinomial probit model , 1994 .

[7]  D. Wise,et al.  A CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE: DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES' , 1978 .

[8]  M. Ben-Akiva,et al.  A Multinational Probit Formulation for Large Choice Sets , 1991 .

[9]  C. Daganzo,et al.  ON THE ESTIMATION OF THE MULTINOMIAL PROBIT MODEL , 1982 .

[10]  T. Yai,et al.  Route Choice Modeling and Investment Effects upon a Metropolitan Rail Network , 1994 .

[11]  Makoto Ito,et al.  Alternative Approaches in the Estimation of User Demand and Surplus of Rail Network , 1993 .

[12]  D. Bolduc GENERALIZED AUTOREGRESSIVE ERRORS IN THE MULTINOMIAL PROBIT MODEL , 1992 .

[13]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[14]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[15]  J. Horowitz RECONSIDERING THE MULTINOMIAL PROBIT MODEL , 1991 .

[16]  H. Williams On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit , 1977 .