Interaction of the Amygdala with the Frontal Lobe in Reward Memory

Five cynomolgus monkeys (Macaca fascicularis) were assessed for their ability to associate visual stimuli with food reward. They learned a series of new two‐choice visual discriminations between coloured patterns displayed on a touch‐sensitive monitor screen; the feedback for correct choice was delivery of food. Normal learning in this task is known to be dependent on the amygdala. The monkeys received brain lesions which were designed to disconnect the amygdala from interaction with other brain structures thought to be involved in this memory task. All the monkeys received an amygdalectomy in one hemisphere and lesions in the other hemisphere of some of the projection targets of the amygdala, namely the ventral striatum, the mediodorsal thalamus and the ventromedial prefrontal cortex. The rate of learning new problems was assessed before and after each operation. Disconnection of the amygdala from the ventral striatum was without effect on learning rate. An earlier study had shown that disconnection of the amygdala from either the mediodorsal thalamus or the ventromedial prefrontal cortex produced only a mild impairment, significantly less severe than that produced by bilateral lesions of any of these three structures. The present results show, however, that disconnection of the amygdala from both the mediodorsal thalamus and the ventromedial prefrontal cortex in the same animal, by crossed unilateral lesions of the amygdala in one hemisphere and of both the mediodorsal thalamus and the ventromedial prefrontal cortex in the other hemisphere, produces an impairment as severe as that which follows bilateral lesions of any of these three structures. These results show that, in stimulus – reward associative memory, the role of the amygdala is entirely dependent on its interaction with the frontal lobe, either by direct projections or by indirect subcortical pathways including the mediodorsal nucleus of the thalamus; and that there are at least two partially independent pathways by which the amygdala can influence the frontal lobe.

[1]  P. Goldman-Rakic,et al.  Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys , 1981, The Journal of comparative neurology.

[2]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[3]  P. Goldman-Rakic,et al.  The primate mediodorsal (MD) nucleus and its projection to the frontal lobe , 1985, The Journal of comparative neurology.

[4]  J. Aggleton X-ray localization of limbic structures in the cynomolgus monkey (Macaca fascicularis) , 1985, Journal of Neuroscience Methods.

[5]  D. Amaral,et al.  The amygdalostriatal projections in the monkey. An anterograde tracing study , 1985, Brain Research.

[6]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[7]  D. Gaffan,et al.  Amygdalectomy and disconnection in visual learning for auditory secondary reinforcement by monkeys , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  D. Gaffan,et al.  Disconnection of the amygdala from visual association cortex impairs visual reward-association learning in monkeys , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  D. Gaffan,et al.  Visual-visual associative learning and reward-association learning in monkeys: the role of the amygdala , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  D. Gaffan,et al.  Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus-reward associative learning in the monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Leslie G. Ungerleider,et al.  Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido‐nigral complex in the monkey , 1990, The Journal of comparative neurology.

[12]  T. Robbins,et al.  The basolateral amygdala-ventral striatal system and conditioned place preference: Further evidence of limbic-striatal interactions underlying reward-related processes , 1991, Neuroscience.

[13]  David Gaffan,et al.  Amygdala and the memory of reward. , 1992 .

[14]  E. Murray,et al.  Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations. , 1992, Behavioral neuroscience.