Spatial and temporal organization during cardiac fibrillation

[1]  M. Fishbein,et al.  Cellular graded responses and ventricular vulnerability to reentry by a premature stimulus in isolated canine ventricle. , 1997, Circulation.

[2]  R. Gray,et al.  Video imaging of atrial defibrillation in the sheep heart. , 1997, Circulation.

[3]  A Garfinkel,et al.  Quasiperiodicity and chaos in cardiac fibrillation. , 1997, The Journal of clinical investigation.

[4]  M. Fishbein,et al.  Mechanism of spontaneous termination of functional reentry in isolated canine right atrium. Evidence for the presence of an excitable but nonexcited core. , 1996, Circulation.

[5]  M. Fishbein,et al.  Reentrant wave fronts in Wiggers' stage II ventricular fibrillation. Characteristics and mechanisms of termination and spontaneous regeneration. , 1996, Circulation research.

[6]  Richard A. Gray,et al.  SPIRAL WAVES AND THE HEART , 1996 .

[7]  R. A. Gray,et al.  Mechanisms of Cardiac Fibrillation , 1995, Science.

[8]  Ditto,et al.  Evidence for determinism in ventricular fibrillation. , 1995, Physical review letters.

[9]  A. Panfilov,et al.  Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. , 1995, Circulation.

[10]  A. Winfree,et al.  Electrical turbulence in three-dimensional heart muscle. , 1994, Science.

[11]  P. S. Chen,et al.  The mechanism of termination of reentrant activity in ventricular fibrillation. , 1994, Circulation research.

[12]  P. Wolf,et al.  A Quantitative Measurement of Spatial Orderin Ventricular Fibrillation , 1993, Journal of cardiovascular electrophysiology.

[13]  W. Baxter,et al.  Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. , 1993, Circulation research.

[14]  R. Ideker,et al.  Efficient electrode spacing for examining spatial organization during ventricular fibrillation , 1993, IEEE Transactions on Biomedical Engineering.

[15]  W. Baxter,et al.  Stationary and drifting spiral waves of excitation in isolated cardiac muscle , 1992, Nature.

[16]  D. Clapham,et al.  Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. , 1991, Science.

[17]  J. Jalife,et al.  Cardiac Electrophysiology: From Cell to Bedside , 1990 .

[18]  V. Fast,et al.  [Drift of vortex in the myocardium]. , 1990, Biofizika.

[19]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[20]  A. T. Winfree,et al.  Simulation of Wave Processes in Excitable Media , 1988 .

[21]  Michael C. Mackey,et al.  From Clocks to Chaos , 1988 .

[22]  A. Winfree When time breaks down , 1987 .

[23]  José Jalife,et al.  Cardiac electrophysiology and arrhythmias , 1985 .

[24]  V. I. Krinsky,et al.  Multi-armed vortices in an active chemical medium , 1982, Nature.

[25]  V. Krinsky Mathematical models of cardiac arrhythmias (spiral waves). , 1978, Pharmacology & therapeutics. Part B: General & systematic pharmacology.

[26]  A. Goldbeter,et al.  Mechanism for oscillatory synthesis of cyclic AMP in Dictyostelium discoideum , 1975, Nature.

[27]  B. Salzberg,et al.  Optical Recording of Impulses in Individual Neurones of an Invertebrate Central Nervous System , 1973, Nature.

[28]  A. Winfree,et al.  Scroll-Shaped Waves of Chemical Activity in Three Dimensions , 1973, Science.

[29]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[30]  J A ABILDSKOV,et al.  Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. , 1959, American heart journal.