Crisis in Amplitude Control Hides in Multistability

A crisis of amplitude control can occur when a system is multistable. This paper proposes a new chaotic system with a line of equilibria to demonstrate the threat to amplitude control from multistability. The new symmetric system has two coefficients for amplitude control, one of which is a partial amplitude controller, while the other is a total amplitude controller that simultaneously controls the frequency. The amplitude parameter rescales the basins of attraction and triggers a state switch among different states resulting in a failure of amplitude control to the desired state.

[1]  Zhouchao Wei,et al.  Hidden chaotic attractors in a class of two-dimensional maps , 2016 .

[2]  B. Bao,et al.  Multistability in Chua's circuit with two stable node-foci. , 2016, Chaos.

[3]  Julien Clinton Sprott,et al.  Amplitude control approach for chaotic signals , 2013 .

[4]  Peng Li,et al.  Joint DOD and DOA Estimation for High Speed Target Using Bistatic MIMO Radar , 2014 .

[5]  Julien Clinton Sprott,et al.  Hypogenetic chaotic jerk flows , 2016 .

[6]  Ruoxun Zhang,et al.  Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations , 2012 .

[7]  Peng Li,et al.  Parameter Estimation Method for High-Speed Target Using Bistatic MIMO Radar with Dual-Frequency Transmitters , 2015, Wirel. Pers. Commun..

[8]  Diyi Chen,et al.  Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control , 2012 .

[9]  Hongtao Li,et al.  A New Class of Chaotic Circuit with Logic Elements , 2015, J. Circuits Syst. Comput..

[10]  Julien Clinton Sprott,et al.  When Two Dual Chaotic Systems Shake Hands , 2014, Int. J. Bifurc. Chaos.

[11]  Li Chun-biao,et al.  A novel chaotic attractor with constant Lyapunov exponent spectrum and its circuit implementation , 2010 .

[12]  Roberto Barrio,et al.  Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .

[13]  Diyi Chen,et al.  Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control. , 2012, Chaos.

[14]  Julien Clinton Sprott,et al.  Constructing Chaotic Systems with Total Amplitude Control , 2015, Int. J. Bifurc. Chaos.

[15]  G. A. Leonov,et al.  Lyapunov dimension formula for the global attractor of the Lorenz system , 2015, Commun. Nonlinear Sci. Numer. Simul..

[16]  Julien Clinton Sprott,et al.  A New Chaotic Jerk Circuit , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[17]  Xiaohua Zhu,et al.  Principles of Chaotic Signal Radar , 2007, Int. J. Bifurc. Chaos.

[18]  Julien Clinton Sprott,et al.  Simplest Chaotic Flows with Involutional Symmetries , 2014, Int. J. Bifurc. Chaos.

[19]  Julien Clinton Sprott,et al.  Multistability in the Lorenz System: A Broken Butterfly , 2014, Int. J. Bifurc. Chaos.

[20]  G. A. Leonov,et al.  Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations , 2014, 1410.2016.

[21]  Xinghuo Yu,et al.  Generating Grid Multiwing Chaotic Attractors by Constructing Heteroclinic Loops Into Switching Systems , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  Bocheng Bao,et al.  Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit , 2016 .

[23]  Zhouchao Wei,et al.  Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.

[24]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[25]  Rongrong Wang,et al.  A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..

[26]  Li Chun-biao,et al.  An attractor with invariable Lyapunov exponent spectrum and its Jerk circuit implementation , 2009 .

[27]  Julien Clinton Sprott,et al.  Chaotic flows with a single nonquadratic term , 2014 .

[28]  Xinghuo Yu,et al.  Design and Implementation of Grid Multiwing Hyperchaotic Lorenz System Family via Switching Control and Constructing Super-Heteroclinic Loops , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Ruoxun Zhang,et al.  Adaptive synchronization of fractional-order chaotic systems via a single driving variable , 2011 .

[30]  Julien Clinton Sprott,et al.  Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.

[31]  Jun Wang,et al.  Absolute term introduced to rebuild the chaotic attractor with constant Lyapunov exponent spectrum , 2012 .

[32]  Julien Clinton Sprott,et al.  A novel four-wing strange attractor born in bistability , 2015, IEICE Electron. Express.

[33]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[34]  Julien Clinton Sprott,et al.  Constructing chaotic systems with conditional symmetry , 2017 .

[35]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[36]  Julien Clinton Sprott,et al.  Finding coexisting attractors using amplitude control , 2014 .

[37]  Julien Clinton Sprott,et al.  A new class of chaotic circuit , 2000 .

[38]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[39]  N. Kuznetsov,et al.  The Lyapunov dimension and its estimation via the Leonov method , 2016, 1602.05410.

[40]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .