Crisis in Amplitude Control Hides in Multistability
暂无分享,去创建一个
[1] Zhouchao Wei,et al. Hidden chaotic attractors in a class of two-dimensional maps , 2016 .
[2] B. Bao,et al. Multistability in Chua's circuit with two stable node-foci. , 2016, Chaos.
[3] Julien Clinton Sprott,et al. Amplitude control approach for chaotic signals , 2013 .
[4] Peng Li,et al. Joint DOD and DOA Estimation for High Speed Target Using Bistatic MIMO Radar , 2014 .
[5] Julien Clinton Sprott,et al. Hypogenetic chaotic jerk flows , 2016 .
[6] Ruoxun Zhang,et al. Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations , 2012 .
[7] Peng Li,et al. Parameter Estimation Method for High-Speed Target Using Bistatic MIMO Radar with Dual-Frequency Transmitters , 2015, Wirel. Pers. Commun..
[8] Diyi Chen,et al. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control , 2012 .
[9] Hongtao Li,et al. A New Class of Chaotic Circuit with Logic Elements , 2015, J. Circuits Syst. Comput..
[10] Julien Clinton Sprott,et al. When Two Dual Chaotic Systems Shake Hands , 2014, Int. J. Bifurc. Chaos.
[11] Li Chun-biao,et al. A novel chaotic attractor with constant Lyapunov exponent spectrum and its circuit implementation , 2010 .
[12] Roberto Barrio,et al. Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .
[13] Diyi Chen,et al. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control. , 2012, Chaos.
[14] Julien Clinton Sprott,et al. Constructing Chaotic Systems with Total Amplitude Control , 2015, Int. J. Bifurc. Chaos.
[15] G. A. Leonov,et al. Lyapunov dimension formula for the global attractor of the Lorenz system , 2015, Commun. Nonlinear Sci. Numer. Simul..
[16] Julien Clinton Sprott,et al. A New Chaotic Jerk Circuit , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.
[17] Xiaohua Zhu,et al. Principles of Chaotic Signal Radar , 2007, Int. J. Bifurc. Chaos.
[18] Julien Clinton Sprott,et al. Simplest Chaotic Flows with Involutional Symmetries , 2014, Int. J. Bifurc. Chaos.
[19] Julien Clinton Sprott,et al. Multistability in the Lorenz System: A Broken Butterfly , 2014, Int. J. Bifurc. Chaos.
[20] G. A. Leonov,et al. Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations , 2014, 1410.2016.
[21] Xinghuo Yu,et al. Generating Grid Multiwing Chaotic Attractors by Constructing Heteroclinic Loops Into Switching Systems , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.
[22] Bocheng Bao,et al. Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit , 2016 .
[23] Zhouchao Wei,et al. Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.
[24] Julien Clinton Sprott,et al. Simple chaotic flows with a line equilibrium , 2013 .
[25] Rongrong Wang,et al. A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..
[26] Li Chun-biao,et al. An attractor with invariable Lyapunov exponent spectrum and its Jerk circuit implementation , 2009 .
[27] Julien Clinton Sprott,et al. Chaotic flows with a single nonquadratic term , 2014 .
[28] Xinghuo Yu,et al. Design and Implementation of Grid Multiwing Hyperchaotic Lorenz System Family via Switching Control and Constructing Super-Heteroclinic Loops , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.
[29] Ruoxun Zhang,et al. Adaptive synchronization of fractional-order chaotic systems via a single driving variable , 2011 .
[30] Julien Clinton Sprott,et al. Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.
[31] Jun Wang,et al. Absolute term introduced to rebuild the chaotic attractor with constant Lyapunov exponent spectrum , 2012 .
[32] Julien Clinton Sprott,et al. A novel four-wing strange attractor born in bistability , 2015, IEICE Electron. Express.
[33] G. Leonov,et al. Localization of hidden Chuaʼs attractors , 2011 .
[34] Julien Clinton Sprott,et al. Constructing chaotic systems with conditional symmetry , 2017 .
[35] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[36] Julien Clinton Sprott,et al. Finding coexisting attractors using amplitude control , 2014 .
[37] Julien Clinton Sprott,et al. A new class of chaotic circuit , 2000 .
[38] G. Leonov,et al. Hidden attractor in smooth Chua systems , 2012 .
[39] N. Kuznetsov,et al. The Lyapunov dimension and its estimation via the Leonov method , 2016, 1602.05410.
[40] I. VagaitsevV.,et al. Localization of hidden Chua ’ s attractors , 2022 .