A design procedure and predictive models for solution crystallisation processes

Useful components and deficiencies of conventional crystallisation design procedures and models are identified. A systematic procedure consisting of a hierarchical decomposition into design of the product, task, flowsheet and individual crystalliser is presented. At each level the relevant specifications, variables and necessary knowledge are identified. For the flowsheet and crystalliser level a predictive crystallisation model is presented to estimate kinetic parameters from experimental CSD data and to analyse the behaviour of design alternatives. Currently, the procedure is applicable to cooling, flashcooling and evaporative crystallisation. The developed model is restricted to systems with little agglomeration. Validation of the proposed design procedure and models requires industrial case studies.

[1]  Richard C. Bennett Crystallizer selection and design , 2002 .

[2]  R. A. Eek Control and Dynamic Modelling of Industrial Suspension Crystallizers , 1995 .

[3]  C. S. Grove,et al.  Crystallization from Solution , 1962 .

[4]  H. Kramer,et al.  Towards on-scale crystalliser design using compartmental models , 1998 .

[5]  Ka Ming Ng,et al.  Fractional crystallization: Design alternatives and tradeoffs , 1995 .

[6]  J. Bridgwater Putting structure into chemical engineering , 1996 .

[7]  E. J. De Jong,et al.  A Model for Secondary Nucleation in a Stirred Vessel Cooling Crystallizer , 1972 .

[8]  Constantinos C. Pantelides,et al.  SpeedUp—recent advances in process simulation , 1988 .

[9]  Alfons Mersmann,et al.  Theoretical Prediction and Experimental Determination of Attrition Rates , 1997 .

[10]  G. M. Westhoff Design and analysis of suspension crystallisers: aspects of crystallisation kinetics and product quality , 2002 .

[11]  J. Mullin,et al.  Industrial Crystallization , 1971, Nature.

[12]  Herman J. M. Kramer,et al.  Modelling of industrial crystallizers, a compartmental approach using a dynamic flow-sheeting tool , 1996 .

[13]  A. Mersmann,et al.  A new model of the effect of stirring intensity on the rate of secondary nucleation , 1989 .

[14]  Min Oh Modelling and simulation of combined lumped and distributed processes , 1995 .

[15]  A. Boxman Particle size measurement for the control of industrial crystallizers , 1992 .

[16]  Jos Derksen,et al.  Large eddy simulations on the flow driven by a Rushton turbine , 1999 .

[17]  Alan Jones,et al.  Dynamics and stability of continuous MSMPR agglomerative precipitation: Numerical analysis of the dual particle coordinate model , 1998 .

[18]  D. Ramkrishna,et al.  On the solution of population balance equations by discretization - III. Nucleation, growth and aggregation of particles , 1997 .

[19]  Z. Zhang,et al.  Crystal growth. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  John N. Sherwood,et al.  Strain variation in the {100} growth sectors of potash alum single crystals and its relationship to growth rate dispersion , 1990 .

[21]  Allan S. Myerson,et al.  Crystals, crystal growth, and nucleation , 2002 .

[22]  H. Kramer,et al.  Design of industrial crystallisers for a given product quality , 1999 .

[23]  Robert A. Baker,et al.  Elements of chemical reactor design and operation , 1963 .

[24]  Paulien M. Herder Process Design in a Changing Environment: Identification of Quality Demands Governing the Design Process , 1999 .

[25]  Herman J. M. Kramer,et al.  The effect of the impeller speed on the product crystal size distribution (CSD) a 22 liter draft tube (DT) crystallizer , 1999 .

[26]  Ka Ming Ng,et al.  Synthesis of reactive crystallization processes , 1997 .

[27]  John Garside,et al.  Industrial crystallization from solution , 1985 .

[28]  Andreas ten Cate,et al.  Compartmental modeling of an 1100L DTB crystallizer based on large eddy flow simulation , 2000 .

[29]  William R. Paterson,et al.  Orthokinetic Aggregation During Precipitation: A Computational Model for Calcium Oxalate Monohydrate , 1997 .

[30]  Erroll P. K. Ottens,et al.  A Model for Secondary Nucleation in a Stirred Vessel Cooling Crystallizer , 1973 .

[31]  Gregory D. Botsaris,et al.  Laboratory Simulation of Industrial Crystallizer Cycling , 1996 .

[32]  Ka Ming Ng,et al.  Simulation of solids processes accounting for particle‐size distribution , 1997 .

[33]  A. M. Neumann Characterizing Industrial Crystallizers of Different Scale and Type , 2001 .

[34]  A. Heijden,et al.  The secondary nucleation rate: a physical model , 1994 .

[35]  Alfons Mersmann,et al.  Design of crystallizers , 1988 .

[36]  John Villadsen Putting structure into Chemical Engineering Proceedings of an industry/university conference , 1997 .

[37]  James M. Douglas,et al.  A hierarchical decision procedure for process synthesis , 1985 .

[38]  Wolfgang Wöhlk,et al.  Die Kristallisationstheorie in der Praxis , 1991 .

[39]  R. C. Everson,et al.  Numerical treatment of the population balance equation using a Spline-Galerkin method , 1994 .

[40]  Michael J. Hounslow,et al.  A finite element analysis of the steady state population balance equation for particulate systems: Aggregation and growth , 1996 .

[41]  J. M. Douglas,et al.  Design and optimisation of solids processes. I: A hierarchical decision procedure for process synthesis of solids systems , 1986 .

[42]  R. S. Ó'Meadhra Modelling of the Kinetics of Suspension Crystallizers: A new Model for Secondary Nucleation , 1995 .

[43]  Herman J. M. Kramer,et al.  Model for secondary nucleation in a suspension crystallizer , 1996 .

[44]  Okko H. Bosgra,et al.  Design and experimental evaluation of stabilizing feedback controllers for continuous crystallizers , 1995 .

[45]  P. Marchal,et al.  Relations between the properties of particles and their process of manufacture , 1996 .

[46]  Y. Zimmels,et al.  Theory of hindered sedimentation of polydisperse mixtures , 1983 .

[47]  A.E.D.M. van der Heijden,et al.  SIZE DISTRIBUTION OF EMBRYOS PRODUCED BY CRYSTAL-ROD CONTACTS , 1989 .

[48]  Peter J.T. Verheijen,et al.  Monitoring heat exchanger fouling for optimal operation of a multiple effect evaporator , 1999 .

[49]  P. Verheijen,et al.  Modelling the settling, dissolution and non-uniform nucleation kinetics in a 150-litre forced circulation crystallizer , 1998 .

[50]  Ernst Dieter Gilles,et al.  A population model for crystallization processes using two independent particle properties , 2001 .

[51]  Alfons Mersmann,et al.  Attrition and secondary nucleation in crystallizers , 1988 .

[52]  Frank Aerstin,et al.  Agitation and Mixing , 1978 .

[53]  Ka Ming Ng,et al.  A hierarchical procedure for the conceptual design of solids processes , 1992 .

[54]  Chyi Hwang,et al.  A wavelet-Galerkin method for solving population balance equations , 1996 .

[55]  A. Mersmann,et al.  The effect of impact energy and the shape of crystals on their attrition rate , 1996 .

[56]  J. Jager Control of industrial crystallizers: The physical aspects , 1990 .

[57]  Herman J. M. Kramer,et al.  Effect of scale of operation on CSD dynamics in evaporative crystallizers , 1991 .

[58]  Ning Wu,et al.  A New Model , 1998 .