Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition.

Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g(-1). However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles.

[1]  Emanuel Peled,et al.  Lithium Sulfur Battery Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions , 1988 .

[2]  Doron Aurbach,et al.  Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell , 1995 .

[3]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[4]  N. Dudney Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte , 2000 .

[5]  Y. Itoh,et al.  Fluorinated carbonyl and olefinic compounds: basic character and asymmetric catalytic reactions. , 2004, Chemical reviews.

[6]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[7]  Yong-Kook Choi,et al.  Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries , 2004 .

[8]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[9]  Elton J. Cairns,et al.  Self-discharge of lithium–sulfur cells using stainless-steel current-collectors , 2005 .

[10]  B. Dunn,et al.  Protection of lithium metal surfaces using chlorosilanes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[11]  J. Vetter,et al.  Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries , 2007 .

[12]  B. Ju,et al.  Thin Solid Films , 2009 .

[13]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[14]  Yanfa Yan,et al.  Conformal surface coatings to enable high volume expansion Li-ion anode materials. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  Chia‐Chen Li,et al.  Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries , 2010 .

[16]  H. Lin,et al.  A study of atomic layer deposited LiAlxOy films on Mg–Li alloys , 2010 .

[17]  Ping Liu,et al.  Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material , 2011 .

[18]  Wanli Xu,et al.  Surface-modified silicon nanowire anodes for lithium-ion batteries , 2011 .

[19]  Yangxing Li,et al.  Effective enhancement of lithium-ion battery performance using SLMP , 2011 .

[20]  Doron Aurbach,et al.  Sulfur‐Impregnated Activated Carbon Fiber Cloth as a Binder‐Free Cathode for Rechargeable Li‐S Batteries , 2011, Advanced materials.

[21]  Wilhelmus M. M. Kessels,et al.  Advanced process technologies: Plasma, direct-write, atmospheric pressure, and roll-to-roll ALD , 2011 .

[22]  Sehee Lee,et al.  Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies. , 2011, Journal of the American Chemical Society.

[23]  Steven M. George,et al.  Improved Mechanical Integrity of ALD-Coated Composite Electrodes for Li-Ion Batteries , 2011 .

[24]  Y. C. Lee,et al.  Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. , 2011, ACS applied materials & interfaces.

[25]  A. Lanzutti,et al.  Multilayer Al2O3/TiO2 Atomic Layer Deposition coatings for the corrosion protection of stainless steel , 2012 .

[26]  K. Leung Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries , 2012, 1304.5976.

[27]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[28]  Yang‐Kook Sun,et al.  Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode , 2013 .

[29]  G. Rubloff,et al.  Examining the role of hydrogen in the electrical performance of in situ fabricated metal-insulator-metal trilayers using an atomic layer deposited Al2O3 dielectric , 2013 .

[30]  D. Mitlin,et al.  ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency. , 2013, Physical chemistry chemical physics : PCCP.

[31]  S. George,et al.  Evaluating Al2O3 gas diffusion barriers grown directly on Ca films using atomic layer deposition techniques , 2013 .

[32]  Xiaogang Han,et al.  Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth , 2013 .

[33]  S. Jung,et al.  How Do Li Atoms Pass through the Al2O3 Coating Layer during Lithiation in Li-ion Batteries? , 2013 .

[34]  Seungsik Oh,et al.  Gas diffusion barrier characteristics of Al2O3/alucone films formed using trimethylaluminum, water and ethylene glycol for organic light emitting diode encapsulation , 2013 .

[35]  Jung Tae Lee,et al.  Plasma‐Enhanced Atomic Layer Deposition of Ultrathin Oxide Coatings for Stabilized Lithium–Sulfur Batteries , 2013 .

[36]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[37]  J. Cabana,et al.  Fingerprinting Lithium-Sulfur Battery Reaction Products by X-ray Absorption Spectroscopy , 2014 .

[38]  M. Winter,et al.  Coated Lithium Powder (CLiP) Electrodes for Lithium‐Metal Batteries , 2014 .

[39]  Jun Lu,et al.  An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. , 2014, ACS applied materials & interfaces.

[40]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[41]  Martin Winter,et al.  Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. , 2015, Physical chemistry chemical physics : PCCP.

[42]  Arumugam Manthiram,et al.  Dual‐Confined Flexible Sulfur Cathodes Encapsulated in Nitrogen‐Doped Double‐Shelled Hollow Carbon Spheres and Wrapped with Graphene for Li–S Batteries , 2015 .