Advances in Parameter Estimation and Performance Improvement in Adaptive Control

In most adaptive control algorithms, parameter estimate errors are not guaranteed to converge to zero. This lack of convergence adversely affects the global performance of the algorithms. The effect is more pronounced in control problems where the desired reference setpoint or trajectory depends on the system's unknown parameters. This paper presents a parameter estimation routine that allows exact reconstruction of the unknown parameters in finite-time provided a given excitation condition is satisfied. The robustness of the routine to an unknown bounded disturbance or modelling error is also shown. To enhance the applicability of the finite-time (FT) identification procedure in practical situations, a novel adaptive compensator that (almost) recover the performance of the FT identifier is developed. The compensator guarantees exponential convergence of the parameter estimation error at a rate dictated by the closed-loop system's excitation. It was shown how the adaptive compensator can be used to improve upon existing adaptive controllers. The modification provided guarantees exponential stability of the parametric equilibrium provided the given PE condition is satisfied. Otherwise, the original system's closed-loop properties are preserved. The results are independent of the control structure employed. The true parameter value is obtained without requiring the measurement or computation of the velocity state vector. Moreover, the technique provides a direct solution to the problem of removing auxiliary perturbation signals when parameter convergence is achieved. The effectiveness of the proposed methods is illustrated with simulation examples. There are two major approaches to online parameter identification of nonlinear systems. The first is the identification of parameters as a part of state observer while the second deals with parameter identification as a part of controller. In the first approach, the observer is designed to provide state derivatives information and the parameters are estimated via estimation methods such as least squares method [19] and dynamic inversion [6]. The second trend of parameter identification is much more widespread, as it allows identification of systems with unstable dynamics. Algorithms in this area include parameter identification methods based on variable structure theory [22, 23] and those based on the notion of passivity [13]. In the conventional adaptive control algorithms, the focus is on the tracking of a given reference trajectory and in most cases parameter estimation errors are not guaranteed to

[1]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[2]  Martin Guay,et al.  Parameter convergence in adaptive extremum-seeking control , 2007, Autom..

[3]  Miroslav Krstic,et al.  Optimizing bioreactors by extremum seeking , 1999 .

[4]  Brian D. O. Anderson,et al.  Recursive identification algorithms for continuous-time nonlinear plants operating in closed loop , 2001, Autom..

[5]  Jeng Tze Huang Sufficient conditions for parameter convergence in linearizable systems , 2003, IEEE Trans. Autom. Control..

[6]  M. Guay,et al.  Excitation Signal Design for Parameter Convergence in Adaptive Control of Linearizable Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[7]  Martin Guay,et al.  Finite-time Parameter Estimation in Adaptive Control of Nonlinear Systems , 2008, 2007 American Control Conference.

[8]  Hideki Hashimoto,et al.  VSS theory-based parameter identification scheme for MIMO systems , 1996, Autom..

[9]  Jung-Shan Lin,et al.  Nonlinearities enhance parameter convergence in strict feedback systems , 1999, IEEE Trans. Autom. Control..

[10]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[11]  G. Kreisselmeier Adaptive observers with exponential rate of convergence , 1977 .

[12]  Riccardo Marino,et al.  Nonlinear control design , 1995 .

[13]  I. Kanellakopoulos,et al.  Nonlinearities enhance parameter convergence in output-feedback systems , 1998, IEEE Trans. Autom. Control..

[14]  Denis Dochain,et al.  Adaptive extremum seeking control of continuous stirred tank bioreactors with unknown growth kinetics , 2004, Autom..

[15]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[16]  R. Marino,et al.  Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems , 1995, IEEE Trans. Autom. Control..

[17]  Jiang Wang,et al.  Adaptive Control with Unknown Parameters in Reference Input , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[18]  M. Morf,et al.  Recursive identification algorithms for right matrix fraction description models , 1983, IEEE Conference on Decision and Control.

[19]  Jianxin Xu,et al.  Parameter identification methodologies based on variable structure control , 1993 .

[20]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[21]  F. Allgöwer,et al.  Parameter and Derivative Estimation for Nonlinear Continuous-Time System Identification , 2001 .

[22]  Martin Guay,et al.  PARAMETER CONVERGENCE IN ADAPTIVE EXTREMUM SEEKING CONTROL , 2006 .

[23]  M. A. Golberg,et al.  The Derivative of a Determinant , 1972 .

[24]  F. Lamnabhi-Lagarrigue,et al.  Parameter identification and state estimation for continuous-time nonlinear systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[25]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.