Optimal design of ECT sensors using prior knowledge

Electrical capacitance tomography (ECT) is a noninvasive imaging modality aiming on the reconstruction of the dielectric material properties within a region of interest. The estimation of the permittivity distribution forms a nonlinear inverse problem, which is marked by a severe ill-posed nature. As a consequence, reconstruction algorithms rely on the use of prior knowledge or regularization techniques to overcome this difficulty. In this paper we want to make use of prior knowledge to optimize the design of ECT sensors. Typical ECT sensors maintain a number between 8 to 16 electrodes, which are mounted in an equidistant scheme on the circumference of the region of interest (e.g. a pipe). This is a suitable approach for sensors with a large number of electrodes. In this work we consider sensors with a considerable smaller number of electrodes and investigate the design of such sensors using prior knowledge. We discuss the incorporation of all modeling aspects and formulate a stochastic optimization function which will lead to optimized sensor designs. We present a simulation study and discuss the design results with respect to the physical properties of the sensing scheme.

[1]  Lihui Peng,et al.  Image reconstruction algorithms for electrical capacitance tomography , 2003 .

[2]  L. S. Leung,et al.  Pneumatic Conveying of Solids: A Theoretical and Practical Approach , 1993 .

[3]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[4]  Daniel Watzenig,et al.  Influence of the discretization error on the reconstruction accuracy in electrical capacitance tomography , 2007 .

[5]  Jari P. Kaipio,et al.  Posterior covariance related optimal current patterns in electrical impedance tomography , 2004 .

[6]  Tomasz Dyakowski,et al.  Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system , 2001 .

[7]  Wuqiang Yang,et al.  Prior-online iteration for image reconstruction with electrical capacitance tomography , 2004 .

[8]  A Adler,et al.  Electrode placement configurations for 3D EIT , 2007, Physiological measurement.

[9]  S. A. Hagrey,et al.  2D Optimized Electrode Arrays for Borehole Resistivity Tomography and CO 2 Sequestration Modelling , 2012 .

[10]  Daniel Watzenig,et al.  A review of statistical modelling and inference for electrical capacitance tomography , 2009 .

[11]  Subhas Chandra Mukhopadhyay,et al.  New Developments and Applications in Sensing Technology , 2011 .

[12]  Michael Prange,et al.  Guided Bayesian optimal experimental design , 2010 .

[13]  NUUTTI HYVÖNEN,et al.  Optimizing Electrode Positions in Electrical Impedance Tomography , 2014, SIAM J. Appl. Math..

[14]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[15]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[16]  Adnan Koksal,et al.  Determination of optimum injected current patterns in electrical impedance tomography , 1995 .

[17]  Hugh McCann,et al.  Electrode configurations for improved spatial resolution in electrical impedance tomography , 2002 .

[18]  Enrique J Berjano,et al.  Small ablation zones created previous to saline infusion result in enlargement of the coagulated area during perfusion RF ablation: an ex vivo experimental study , 2007, Physiological measurement.

[19]  Qing-Hua Huang,et al.  An optical coherence tomography (OCT)-based air jet indentation system for measuring the mechanical properties of soft tissues , 2009, Measurement science & technology.

[20]  T. Bretterklieber,et al.  Reduced electrical capacitance tomography sensor for flow profile estimation , 2014, IEEE SENSORS 2014 Proceedings.

[21]  Ø. Isaksen,et al.  A review of reconstruction techniques for capacitance tomography , 1996 .

[22]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[23]  George E. Klinzing,et al.  An investigation of the prevailing flow patterns and pressure fluctuation near the pressure minimum and unstable conveying zone of pneumatic transport systems , 2000 .

[24]  Huaxiang Wang,et al.  A review on image reconstruction algorithms for electrical capacitance/resistance tomography , 2016 .

[25]  Steven E. Rigdon,et al.  Model-Oriented Design of Experiments , 1997, Technometrics.

[26]  Hugh McCann,et al.  Process Imaging For Automatic Control , 2005 .

[27]  Arto Voutilainen,et al.  Optimal current patterns in dynamical electrical impedance tomography imaging , 2007 .

[28]  Daniel Watzenig,et al.  Statistical robust design using the unscented transformation , 2005 .

[29]  J Kaipio,et al.  Generalized optimal current patterns and electrical safety in EIT. , 2001, Physiological measurement.

[30]  Sha Hong,et al.  Optimum design of electrode structure and parameters in electrical impedance tomography , 2006, Physiological measurement.

[31]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[32]  Hugh McCann,et al.  Process Imaging For Automatic Control (Electrical and Computer Enginee) , 2005 .

[33]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[34]  S. A. al Hagrey 2D Optimized Electrode Arrays for Borehole Resistivity Tomography and CO2 Sequestration Modelling , 2011, Pure and Applied Geophysics.

[35]  M. Neumayer,et al.  Current Reconstruction Algorithms in Electrical Capacitance Tomography , 2011 .

[36]  Daniel Watzenig,et al.  Reconstruction of inhomogeneities in fluids by means of capacitance tomography , 2003 .

[37]  Paul J Hadwin,et al.  Bayesian approach to the design of chemical species tomography experiments. , 2016, Applied optics.

[38]  Nathan Ida Engineering Electromagnetics , 2000 .

[39]  Hubert Zangl,et al.  Optimal Design of Multiparameter Multisensor Systems , 2008, IEEE Transactions on Instrumentation and Measurement.

[40]  Thomas Bretterklieber,et al.  PCA Based State Reduction for Inverse Problems Using Prior Information , 2017 .